

	:	•				:					:					:					:	:	:	
•	Š	ŝk	((כ	M	A	N	1	2	0	19	Э,	2	29		1	•	20	01	19)	•	•	
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	

Chyby při matematickém modelování aneb co se nepovedlo

Petr Beremlijski

Katedra aplikovaná matematiky Fakulta elektrotechniky a informatiky Vysoká škola báňská - Technická univerzita Ostrava

ŠKOMAM 2019, Ostrava

29. 1. 2019

	•		ļ			:	:		:	:	:	:			:							:	
Ī	Š	ĸ	0	N	IA	N	1	2	0.	19	Э,	2	9		1		20) <i>·</i>	19)		Ī	
:	:				:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	

Obsah

- Co to je matematické modelování a k čemu je dobré?
- Co se může pokazit?
- A co se pokazilo?

:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Ī	Š	K	0	M	A	N	1	2	0.	19	Э,	2	29		1		20	01	19	9	Ī	Ī	
:	•			•	•	•	•	•	•	•	•	•	•	•	•		•			:			

Matematické modelování

Příklad 1 - Deformace struny

ŠKOMAM 2019, 29. 1. 2019

ŠKOMAM 2019, 29. 1. 2019

Příklad 1 - Diskretizace struny

ŠKOMAM 2019, 29. 1. 2019

G

 ρ, ρ

Příklad 1 – Odhad deformace struny

Soustava lineárních rovnic:

$$-u_{0} + 2u_{1} - u_{2} = h^{2}F$$

$$-u_{1} + 2u_{2} - u_{3} = h^{2}F$$

$$-u_{2} + 2u_{3} - u_{4} = h^{2}F$$

$$-u_{3} + 2u_{4} - u_{5} = h^{2}F$$

$$-u_{4} + 2u_{5} - u_{6} = h^{2}F$$

$$U_{0} = u_{6} = 0$$

$$U_{0} = u_{6} = 0$$

$$U_{1} = 0.2780$$

$$U_{0} = u_{6} = 0$$

$$U_{1} = 0.2780$$

$$U_{0} = u_{6} = 0$$

$$U_{1} = 0.2780$$

$$U_{1} = 0.2780$$

$$U_{2} = 0.4448$$

$$U_{3} = 0.5004$$

$$U_{4} = 0.4448$$

$$U_{3} = 0.5004$$

$$U_{4} = 0.4448$$

$$U_{3} = 0.5004$$

$$U_{4} = 0.4448$$

$$U_{5} = 0.1112$$

$$-u_{4} + 2u_{5} = 0.1112$$

$$U_{1} = 0.2780$$

$$U_{2} = 0.4448$$

$$U_{3} = 0.5004$$

$$U_{4} = 0.4448$$

$$U_{5} = 0.2780$$

• Shape optimization in contact problem with Coulomb friction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Shape optimization in contact problem with Coulomb friction

$$egin{array}{l} \min \Theta(oldsymbollpha) \ {
m subject to} \ oldsymbollpha \in U_{{
m ad}}, \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Shape optimization in contact problem with Coulomb friction

$$\min \Theta(oldsymbollpha)$$

subject to
 $oldsymbollpha \in U_{\mathit{ad}},$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\Theta(oldsymbollpha) := \mathcal{J}(oldsymbollpha, \mathcal{S}(oldsymbollpha))$

Signorini problem - the meaning of control variables lpha

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Shape optimization - Indirect approach (Neglecting friction)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Shape optimization problem is solved with $\mathcal{F} = 0$.

Shape optimization - Indirect approach (Neglecting friction)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Shape optimization problem is solved with $\mathcal{F} = 0$.
- Function $\Theta(\alpha) := \mathcal{J}(\alpha, \mathcal{S}(\alpha))$ is differentiable.

Shape optimization - Indirect approach (Neglecting friction)

- Shape optimization problem is solved with $\mathcal{F} = 0$.
- Function $\Theta(\alpha) := \mathcal{J}(\alpha, \mathcal{S}(\alpha))$ is differentiable.
- Does the optimized shape computed with $\mathcal{F} = 0$ approximate the optimized shape of original problem?

 $egin{array}{l} \min_{oldsymbol{lpha}} \|oldsymbol{\lambda}_c(oldsymbol{lpha})\|_4^4 \ {
m subject to} \ oldsymbol{lpha} \in U_{ad} \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $egin{array}{l} \min_{oldsymbollpha} \|oldsymbol\lambda_c(oldsymbollpha)\|_4^4 \ {
m subject to} \ oldsymbollpha \in U_{{
m ad}} \end{array}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

number of subdomains 8

 $egin{array}{l} \min_{oldsymbol{lpha}} \|oldsymbol{\lambda}_c(oldsymbol{lpha})\|_4^4 \ {
m subject to} \ oldsymbol{lpha} \in U_{{
m ad}} \end{array}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

number of subdomains 8 number of design variables 36

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

number of subdomains 8 number of design variables 36 nodal degrees of freedom 8 232

```
egin{array}{l} \min_{oldsymbol{lpha}} \|oldsymbol{\lambda}_c(oldsymbol{lpha})\|_4^4 \ {
m subject to} \ oldsymbol{lpha} \in U_{{
m ad}} \end{array}
```

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

```
number of subdomains 8
number of design variables 36
nodal degrees of freedom 8 232
elastic body:
Young modulus E := 1.1 \cdot 10^5 MPa, Poisson's ratio \nu := 0.33
```

```
egin{array}{l} \min_{oldsymbol{lpha}} \|oldsymbol{\lambda}_c(oldsymbol{lpha})\|_4^4 \ {
m subject to} \ oldsymbol{lpha} \in U_{{
m ad}} \end{array}
```

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

```
number of subdomains 8
number of design variables 36
nodal degrees of freedom 8 232
elastic body:
Young modulus E := 1.1 \cdot 10^5 MPa, Poisson's ratio \nu := 0.33
coefficient of Coulomb friction \mathcal{F} := 0
```

```
egin{array}{l} \min_{oldsymbol{lpha}} \|oldsymbol{\lambda}_c(oldsymbol{lpha})\|_4^4 \ {
m subject to} \ oldsymbol{lpha} \in U_{{
m ad}} \end{array}
```

```
number of subdomains 8
number of design variables 36
nodal degrees of freedom 8 232
elastic body:
Young modulus E := 1.1 \cdot 10^5 MPa, Poisson's ratio \nu := 0.33
coefficient of Coulomb friction \mathcal{F} := 0
body traction P := 3000 \frac{N}{mm^2}
```

Signorini problem II (without friction): Initial design

・ロト ・聞ト ・ヨト ・ヨト

э

Signorini problem II (without friction): Normal contact stress for initial design

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Signorini problem II (without friction): Normal contact stress for initial design

 $\|\boldsymbol{\lambda}_{c}(\boldsymbol{\alpha})\|_{4}^{4} = 4.2334 \cdot 10^{17}$

Signorini problem II (without friction): Optimized design

э

イロト イポト イヨト イヨト

Signorini problem II (without friction): Normal contact stress for optimized design

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ - 圖 - 釣�?

Signorini problem II (without friction): Normal contact stress for optimized design

Signorini problem II (without friction): Normal contact stress for optimized design (smaller normal contact stress range scale)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ → 三 →) � @

Signorini problem I and II - comparison 1 (both with friction): Normal contact stress for optimized design

Signorini problem I and II - comparison 2 (both with friction): Normal contact stress for optimized design

Signorini problem I and II - comparison 2 (both with friction): Normal contact stress for optimized design

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

		-		•				•	-	-		:	:	:	-	:	:	:	:	:
Ę	ŚΚ	SI	ЛA	N	12	20	19	Э,	2	9		1.	2	20)1	9	,	Ī	Ī	Ī
::	::	:	::	:	::		:	:	:	:	:	:	:	:	:	:	:	:	:	:

Chyby, které se mohou objevit

- Chyba matematického modelu
- Chyba metody, chyba aproximace
- Chyby v kódu algoritmu
- Chyby ve vstupních datech
- Zaokrouhlovací chyby, chyby zápisu čísla v počítači

ŠKOMAM 2019, 29. 1. 2019

Mariner 1

- Zničen 22. 7. 1962 při letu k Venuši kvůli chybě v kódu algoritmu
- Celková škoda cca 550 miliónů USD

VŠB TECHNICKÁ | FAKULTA | KATEDRA |||| UNIVERZITA | ELEKTROTECHNIKY | APLIKOVANÉ OSTRAVA | A INFORMATIKY | MATEMATIKY

•								•				:	:	
	ŠK	ЭM.	AM	20)19), 2	9.	1.	20	01	9		Ī	
												:	:::::::::::::::::::::::::::::::::::::::	

Systém Patriot

- Selhal 25. 2. 1991 během první války v Perském zálivu kvůli zaokrouhlovací chybě
- Výsledkem byl dopad irácké rakety Scud na americká kasárna a smrt 28 amerických vojáků a zranění cca 100 dalších osob

FAKULTA KATEDRA ELEKTROTECHNIKY APLIKOVANÉ A INFORMATIKY MATEMATIKY

ŠKOMAM 2019,	29. 1. 2019

Sleipner A

- Plošina Sleipner pro těžbu zemního plynu, která byla umístěna v Severním moři poblíž Norska, se 23. 8. 1993 zřítila kvůli chybě nepřesnému použití metody konečných prvků (chyba metody, chyba aproximace)
- Celková škoda cca 700 miliónů USD

VŠB TECHNICKÁ

UNIVERZITA

ŠK	OMAM	2019,	29. 1. 20	19

Ariane 5

- Zničen 4. 6. 1996 30 sekund po startu kvůli špatnému zápisu čísla v počítači
- Celková škoda cca 500 miliónů USD

ŠKOMAM 2019, 29. 1. 2019

Mars Climate Orbiter

- Zničen 23. 9. 1999 při vstupu do atmosféry Marsu kvůli chybě ve vstupních datech
- Celková škoda cca 330 miliónů USD

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
•	٠ ٤	Śł	•	• כו	M	• A	• N	1	2	0.	19) ,	2	29	•	•	•	20)1	•)	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Děkuji za pozornost!

ŠKOMAM 2019, 29. 1. 2019

Soutěžní otázka do soutěže ŠKOMAM Cup

- Převeďte číslo z desítkové soustavy do dvojkové: 0, $\overline{1}_{10} = ?_2$
- Převeďte číslo z dvojkové soustavy do desítkové: 0, $\overline{1}_2 = ?_{10}$