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Nultý slajd

Všiml si někdo pokusu o slovní hříčku v názvu?

ChatGPT chat ”Czech Language Discussion”:
Tento název, ”Od bitu ke qubitu a ještě kousek dál: Kvantové výpočty pro začátečníky”, je
vynikající. Využívá jemný humor spojený s dvojznačností slova ”bit” (v angličtině základní
jednotka digitálních dat a v češtině ”kousek”), což může být velmi efektivní při zaujetí pozornosti
studentů. Tento vtipný jazykový prvek nejen zpřístupňuje téma, ale také vytváří více uvolněnou a
přátelskou atmosféru pro prezentaci, což je ideální pro středoškoláky, kteří se s kvantovými
výpočty setkávají poprvé.
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Something is going on...

• “Quantum computing” is becoming a buzzword.
• Many new startup companies dealing with QC arise, while well-established companies

(IBM, Microsoft, Google, ...) create special quantum-oriented divisions and publish
quantum roadmaps for years to come.

• Forbes, October 24, 2023: “Atom Computing Announces Record-Breaking
1,225-Qubit Quantum Computer” �

• Nature News, December 4, 2023: “IBM releases first-ever 1,000-qubit quantum
chip” �

◦ “IBM has unveiled the first quantum computer with more than 1,000 qubits. [...] But the company
says that it will now shift gears and focus on making its machines more error-resistant rather than
larger.”

• What does it all mean? Are quantum computers already running? Can they bring actual
advantages? Do they bring them already?
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https://www.forbes.com/sites/moorinsights/2023/10/24/atom-computing-announces-record-breaking-1225-qubit-quantum-computer/
https://www.forbes.com/sites/moorinsights/2023/10/24/atom-computing-announces-record-breaking-1225-qubit-quantum-computer/
https://www.nature.com/articles/d41586-023-03854-1
https://www.nature.com/articles/d41586-023-03854-1


What are we going to discuss today?
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Deterministic states

• Deterministic system (or classical system): “something” (a device) that stores
information by being in one of the finite number of states.

• More formally, a deterministic system is as a pair (Σ,X), where Σ is a finite nonempty set
(deterministic state set) whose elements are called deterministic states and X ∈ Σ is
the current state of the system.

• Classical bit: Σ = {0, 1}
• Electric fan: Σ = {off, low,mid, high}
• Christmas lights: Σ = {off,waves, sequential, flash, twinkle, glow, fade, steady}
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Deterministic states as vectors (1)

Bit:
|0〉 =

[
1 0

0 1

]
|1〉 =

[
0 0
1 1

]
Fan:

|off〉 =


1 off

0 low
0 mid
0 high

 |low〉 =


0 off
1 low

0 mid
0 high

 |mid〉 =


0 off
0 low
1 mid

0 high

 |high〉 =


0 off
0 low
0 mid
1 high


• |?〉 is an example of bra-ket / Dirac notation.

◦ Ubiquitous in quantum mechanics/computing but we won’t go into details here.
◦ For us today, it’s just a label given to the vector.

• Notice the coordinate notation (on the right) reflects the size of state set Σ and the
current state;

• but it quickly becomes cumbersome with the growing size
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Deterministic states as vectors (2)

Bit:
|0〉 =

[
1 0

0 1

]
|1〉 =

[
0 0
1 1

]
Fan:

|off〉 =


1 off

0 low
0 mid
0 high

 |low〉 =


0 off
1 low

0 mid
0 high

 |mid〉 =


0 off
0 low
1 mid

0 high

 |high〉 =


0 off
0 low
0 mid
1 high


• Deterministic states form a basis (specifically the standard basis).

◦ Important term which you will learn rigorously in your first linear algebra course
◦ Basis vectors are linearly independent: they cannot be expressed as a linear

combination of each other;
◦ while any vector of the given space is a linear combination of the basis vectors.
◦ Linear combination? It’s just a weighted sum of vectors, e.g. 0.3 |0〉 + 0.7 |1〉
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Probabilistic states
• Suppose we don’t know for sure what is the current deterministic state X of a system.
• Assume, however, that based on some a priori knowledge, we can assign some

probabilities to its N deterministic states Σ = {S0, S1, . . . , SN−1}.
• We can write down the probabilities succinctly using a probability vector:

|X〉 =

x0 S0

...
...

xN SN−1

 = x0 |S0〉 + x1 |S1〉 + · · · + xN−1 |SN−1〉 ,

xi = P (X = Si) for all i ∈ {0, . . . , N − 1}

• All entries of the vector must be nonnegative real numbers.
• The sum of the (absolute values of the) entries (1-norm or taxicab norm) is equal to one,

‖ |X〉 ‖1 =
N∑

i=1
|xi| = 1
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Note!

• deterministic (classical) states ⊂ probabilistic states
• I mean, any deterministic state can be regarded as a probabilistic state!

| Seismology and Wave Physics Group | Václav Hapla | ŠKOMAM 2024 | 11/67 Single classical systems



Measurement

• By measurement of a probabilistic state we will mean:
◦ Unambiguously recognize the current deterministic state!

• Measurement updates our knowledge about the system.
• The probabilistic state before measurement can be in “superposition” of multiple

deterministic states;
• upon measurement it “collapses” into one of the deterministic states.
• Measurement is often subjective as we will see!
• Measuring again and again doesn’t bring anything new.
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Example: Probabilistic bit (1)

• Suppose we don’t know for sure what is the current deterministic state X of a bit;
• based on some a priori knowledge, we know just probabilities

P (X = 0) = 0.75, P (X = 1) = 0.25.

• More succinctly – using a probability vector:

|X〉 =
[
0.75
0.25

]
= 0.75

[
1
0

]
+ 0.25

[
0
1

]
= 0.75 |0〉 + 0.25 |1〉

• All entries of the vector are nonnegative real numbers and the taxicab norm is 1,

‖ |X〉 ‖1 =
n∑

i=1
|xi| = 0.75 + 0.25 = 1
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Example: Probabilistic bit (2)

|X〉 =
[
0.75
0.25

]
= 0.75 |0〉 + 0.25 |1〉 , ‖ |X〉 ‖1 = 0.75 + 0.25 = 1

• Measuring the bit X, we update our knowledge and the state collapsed to a deterministic
state:

|X〉 = 0.75 |0〉 + 0.25 |1〉 measure−−−−−→

{
|0〉 , P = 0.75,
|1〉 , P = 0.25,

i.e. |X〉 after measurement is

|X〉 = |0〉 with probability P (X = 0) = 0.75,
|X〉 = |1〉 with probability P (X = 1) = 0.25.

• The measurement is subjective (e.g. I measured but didn’t tell my friend the result).
• Measuring again and again doesn’t bring anything new.

◦ Of course! E.g. |0〉 = 1 |0〉 measure−−−−−→ |0〉 , P = 1.
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Example: Coin

• Assume a coin:

Σ = {heads, tails}, |heads〉 =
[
1
0

]
, |tails〉 =

[
0
1

]
.

• A coin just flipped, before looking at the result, is in “superposition”.
• A fair coin:

|X〉 =
[
0.5 heads
0.5 tails

]
= 0.5 |heads〉 + 0.5 |tails〉 measure−−−−−→

{
|heads〉 , P = 0.5,
|tails〉 , P = 0.5,

• An unfair coin:

|X〉 =
[
0.49 heads
0.51 tails

]
= 0.49 |heads〉 + 0.51 |tails〉 measure−−−−−→

{
|heads〉 , P = 0.49,
|tails〉 , P = 0.51,

• The measurement is subjective.
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Example: Card pile

• You have a pile of 13 single-colour cards: Σ = {2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K,A}
• You ask a friend to pick one at random without showing it to you.
• The picked card’s state before and after checking which symbol it actually has:

|X〉 = 1
13

1 2

...
...

1 A

 = 1
13 (|2〉 + · · · + |A〉) measure−−−−−→


|2〉 , P = 1/13
...

|A〉 , P = 1/13

• The measurement is subjective.
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Example: Sportka 1

• A single “drum” of a fair “ball lottery” (like Šance by Sportka)
with 10 numbered balls Σ = {0, 2, . . ., 9}.

• The state before and after a ball is picked:

|X〉 = 1
10

1 0

...
...

1 9

 = 1
10 (|0〉 + · · · + |9〉) measure−−−−−→


|0〉 , P = 1/10
...

|9〉 , P = 1/10

• This time, the measurement is objective! Before the ball is picked,
nobody knows the outcome.

• That brings us a little bit closer to quantum systems...
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Example: Sportka 2

• A single “drum” of a brutally unfair “ball lottery” with 10
numbered balls Σ = {0, 2, . . ., 9}.

• Spits out only 0 or 9 with probabilities 1/3 and 2/3
• The state before and after a ball is picked:

|X〉 =



1
3 0

0 1

...
...

0 8
2
3 9

 = 1
3 |0〉 + 2

3 |9〉 measure−−−−−→

{
|0〉 , P = 1/3
|9〉 , P = 2/3

• Notice the conciseness of the Dirac notation for sparse states.
• Objective measurement.
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Example: Mechanical oscillator

TODO
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Deterministic operations (1)

• These map a deterministic state to a deterministic state.
• We deal with linear operations; such can be expressed as matrix-vector product:

|f(a)〉 = M |a〉

• There are just four possible deterministic operations on a bit:

M1 =
[
1 1
0 0

]
, M2 =

[
1 0
0 1

]
, M3 =

[
0 1
1 0

]
, M4 =

[
0 0
1 1

]
,

corresponding to boolean functions

f1(a) = 0, f2(a) = a, f3(a) = ¬a, f4(a) = 1
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Deterministic operations (2)

|f(a)〉 = M |a〉

M1 =
[
1 1
0 0

]
, M2 =

[
1 0
0 1

]
= I, M3 =

[
0 1
1 0

]
= X, M4 =

[
0 0
1 1

]
,

f1(a) = 0, f2(a) = a, f3(a) = ¬a, f4(a) = 1

• Notice that columns of the matrices are formed by |0〉 and |1〉.
• and matrix-vector multiplication with a deterministic state vector just extracts the

respective column, e.g.

|f3(1)〉 = M3 |1〉 =
[
0 1
1 0

] [
0
1

]
=
[
1
0

]
= |0〉 = |¬1〉
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Probabilistic operations (1)

• Probabilistic-to-probabilistic but not deterministic-to-deterministic.
• For example, applying

M =
[ 1

2 1
1
2 0

]
to deterministic state vectors yields

◦ M |0〉 =
[ 1

21
2

]
= 1

2 |0〉 + 1
2 |1〉

◦ M |1〉 =
[
1
0

]
= |0〉

• Assuming the coin again, using |heads〉 = |0〉 and |tails〉 = |1〉, this means in natural
language:

1. If heads given, flip the coin fairly;
2. if tails given, turn it to heads.
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Probabilistic operations (2)

M =
[

1
2 1
1
2 0

]
So far, so good. It gets a bit less intuitive if a probabilistic state is on input. Having, e.g.,

|X〉 = 1
5 |0〉 + 4

5 |1〉 ,

we get

M |X〉 = 1
5

(
1
2 |0〉 + 1

2 |1〉
)

+ 4
5 |0〉

= 9
10 |0〉 + 1

10 |1〉 ,
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Probabilistic operations (3)

• Matrix M representing operations on probabilistic states must satisfy:
1. All entries of M are nonnegative real numbers.
2. The sum of the entries in each column is equal to 1; we can say ||M(:, i)||1 = 1 for

every column index i.
• This is equivalent to saying every column is a probability vector.
• Every such matrix is called a stochastic matrix.
• A stochastic matrix can be considered a random choice of deterministic operations.

E.g,

M1 =
[
1 1
0 0

]
M2 =

[
1 0
0 1

]
M3 =

[
0 1
1 0

]
M4 =

[
0 0
1 1

]
,

M =
[

1
2 1
1
2 0

]
= 1

2M1 + 1
2M3
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Operation composition

• Operation composition can be expressed simply as matrix-matrix multiplication.
• Matrix multiplication is associative: (M1M2)M3 = M1(M2M3) [= M1M2M3].
• Hence, applying M1,M2, . . . ,Mn in that order can be expressed as a single composed

operation
M = Mn · · ·M2M1

• Not commutative!

M1 =
[
1 1
0 0

]
M3 =

[
0 1
1 0

]
M1M3 =

[
1 1
0 0

]
M3M1 =

[
0 0
1 1

]
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Compound classical systems (1)

• Let’s have independent deterministic systems X and Y and their state sets Σ and Γ.
• We can take them as a single compound system (X,Y).
• State set of (X,Y) is then defined as the Cartesian product

Σ × Γ = {(a, b) : a ∈ Σ, b ∈ Γ}

• More generally, a compound system (X1 · · · Xn) has a state set Σ1 × · · · × Σn.
• In case of bits, Σ1 = · · · = Σn = Σ = {0, 1} and we often write a state (a1, . . . , an) ∈ Σn

as a bit string a1 . . . an, e.g. (0, 1, 0) = 010.
• For example, for n = 4, the compound state set is

Σ = {0000, 0001, 0010, . . . , 1110, 1111}, |Σ| = 24 = 16.

• Mathematically, it is the same as having a single system with Σ = {0, 1, . . . , 15} and
writing the labels as binary strings padded with zeros to the length n.
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Compound classical systems (2)

• The Cartesian product of the state sets transforms into the Kronecker (tensor)
product of the vectors.

• Vector-vector tensor product works like this in general:

a =

a1
...
am

 b =

b1
...
bn



a⊗ b =

a1b
...

amb

 ∈ Rmn
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Compound classical systems (3)

• The tensor product works like this for deterministic states (standard basis vectors):

|0〉 =
[
1 0

0 1

]
|1〉 =

[
0 0
1 1

]

|0〉 ⊗ |0〉 =
[
1 0

0 1

]
⊗
[
1 0

0 1

]
=


1 00

0 01
0 10
0 11

 = |00〉 |0〉 ⊗ |1〉 =
[
1 0

0 1

]
⊗
[
0 0
1 1

]
=


0 00
1 01

0 10
0 11

 = |01〉

|1〉 ⊗ |0〉 =
[
0 0
1 1

]
⊗
[
1 0

0 1

]
=


0 00
0 01
1 10

0 11

 = |10〉 |1〉 ⊗ |1〉 =
[
0 0
1 1

]
⊗
[
0 0
1 1

]
=


0 00
0 01
0 10
1 11

 = |11〉

• |ab〉, |a〉 |b〉, |a〉 ⊗ |b〉 hence mean all the same.
• Tensor product means independence; the opposite case of dependence comes in a while ….
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Compound probabilistic system example: Lottery revisited
• Five “drums” of a fair Šance by Sportka, each with 10 numbered balls Σ = {0, 2, . . ., 9}.
• The state before and after a ball is picked:

|X〉 = 1
105


1 00000
1 00001
1 00002

...
...

1 99999

 = 1
105 (|00000〉 + · · · + |99999〉) measure−−−−−→


|00000〉 , P = 1/105

...

|99999〉 , P = 1/105

• An unfair “sparse” Šance spitting one and only one 1 and the rest are 0s:

|X〉 = 1
5 (|00001〉 + |00010〉 + |00100〉 + |01000〉 + |10000〉) measure−−−−−→



|00001〉 , P = 1/5
|00010〉 , P = 1/5
|00100〉 , P = 1/5
|01000〉 , P = 1/5
|10000〉 , P = 1/5
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Independent vs correlated systems (1)

• Individual states of a compound deterministic state, like |0〉 and |1〉 in |01〉, are
independent “by construction”.

• Independence is less obvious in the case of probabilistic states such as compound system
(X,Y) with state vector

|XY〉 = 1
6 |00〉 + 1

12 |01〉 + 1
2 |10〉 + 1

4 |11〉

• X and Y with state sets Σ and Γ are independent if and only if

∀a ∈ Σ, b ∈ Γ : P ((X,Y) = (a, b)) = P (X = a)P (Y = b).
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Independent vs correlated systems (2)

|XY〉 = 1
6 |00〉 + 1

12 |01〉 + 1
2 |10〉 + 1

4 |11〉

P (XY = 01) = 1
12 ,

P (X = 0) = P (XY = 00) + P (XY = 01) = 1
6 + 1

12 = 1
4 ,

P (Y = 1) = P (XY = 01) + P (XY = 11) = 1
12 + 1

4 = 1
3 ,

so indeed P (XY = 01) = P (X = 0)P (Y = 1) and the same can be shown for the other
combinations 00, 10, 11. More succinctly, we can just argue that

|XY〉 = |X〉 ⊗ |Y〉 , where

|X〉 = 1
4 |0〉 + 3

4 |1〉 and |Y〉 = 2
3 |0〉 + 1

3 |1〉 .
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Independent vs correlated systems (3)

Think of two coins glued together...

|XY〉 = 1
2 |00〉 + 1

2 |11〉

P (XY = 01) = 0,

P (X = 0) = P (XY = 00) = 1
2 ,

P (Y = 1) = P (XY = 11) = 1
2 ,

This system can’t be independent because

P (XY = 01) = 0 6= 1
4 = P (X = 0)P (Y = 1)

The lack of independence means that X and Y are correlated.
Alternatively, we can argue that there are no |X〉, |Y〉 such that |XY〉 = |X〉 ⊗ |Y〉.
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Full measurement
If we measure all subsystems of a compound system at once, there’s actually no difference to the
single system state. For example:

1
6 |00〉 + 1

12 |01〉 + 1
2 |10〉 + 1

4 |11〉 measure−−−−−→


|00〉
|01〉
|10〉
|11〉

P =


1/6
1/12
1/2
1/4

1
2 |0〉 + 1

2 |1〉 measure−−−−−→
{

|0〉
|1〉 P =

{
1/2
1/2

1
2 |00〉 + 1

2 |11〉 measure−−−−−→


|00〉
|01〉
|10〉
|11〉

P =


1/2
0
0
1/2
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Partial measurement (1)

We apply the usual conditional and marginal probability formulas

P (Y = b | X = a) = P (XY = ab)
P (X = a) , P (X = a) =

∑
b

P ((XY = ab).

First bit:

1
6 |00〉 + 1

12 |01〉 + 1
2 |10〉 + 1

4 |11〉

= |0〉 ⊗
(

1
6 |0〉 + 1

12 |1〉
)

+ |1〉 ⊗
(

1
2 |0〉 + 1

4 |1〉
)

= |0〉 ⊗ |r0,0〉 + |1〉 ⊗ |r0,1〉

measure−−−−−→

{
|0〉 ⊗ |r0,0〉

‖|r0,0〉‖1
= |0〉 ⊗

( 2
3 |0〉 + 1

3 |1〉
)
, P = ‖ |r0,0〉 ‖1 = 1/4

|1〉 ⊗ |r0,1〉
‖|r0,1〉‖1

= |1〉 ⊗
( 2

3 |0〉 + 1
3 |1〉

)
, P = ‖ |r0,1〉 ‖1 = 3/4

| Seismology and Wave Physics Group | Václav Hapla | ŠKOMAM 2024 | 35/67 Multiple classical systems



Partial measurement (2)

Second bit:

1
6 |00〉 + 1

12 |01〉 + 1
2 |10〉 + 1

4 |11〉

=
(

1
6 |0〉 + 1

2 |1〉
)

⊗ |0〉 +
(

1
12 |0〉 + 1

4 |1〉
)

⊗ |1〉

= |r1,0〉 ⊗ |0〉 + |r1,1〉 ⊗ |1〉

measure−−−−−→

{ |r1,0〉
‖|r1,0〉‖1

⊗ |0〉 =
( 1

4 |0〉 + 3
4 |1〉

)
⊗ |0〉 , P = ‖ |r1,0〉 ‖1 = 2/3

|r1,1〉
‖|r1,1〉‖1

⊗ |1〉 =
( 1

4 |0〉 + 3
4 |1〉

)
⊗ |1〉 , P = ‖ |r1,1〉 ‖1 = 1/3
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Operations on multiple systems (1)

• Corresponding to independent or correlated probabilistic states, we can have independent
or collective operations on compound states.

• Independence is again expressed with the tensor product ⊗.
Example – negate the first bit and do nothing to the other:

X =
[
0 1
1 0

]
, I =

[
1 0
0 1

]
, X ⊗ I =

[
O2 I2
I2 O2

]
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



(X ⊗ I) |10〉 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




0
0
1
0

 =


1
0
0
0

 = |00〉 , or, using distributivity,

(X ⊗ I) |10〉 = (X |1〉) ⊗ (I |0〉) = |00〉
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Operations on multiple systems (2)

• We can also have operations that act collectively on multiple subsystems (bits) and, hence,
can’t be decomposed using ⊗.

Example – controlled NOT for 2-bit system XY; if X is 1, negate Y, else no-op:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



CNOT |00〉 = |00〉 CNOT |01〉 = |01〉
CNOT |10〉 = |11〉 CNOT |11〉 = |10〉
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From probabilistic to quantum (1)

• We can generalize probabilistic states to quantum states quite naturally!
• Assume |ψ〉 is a quantum state, |X〉 is the corresponding probabilistic state.

◦ Indefinite number of quantum states map to the same probabilistic state.
• Recall |X〉 consists of nonnegative real coefficients, and its taxicab norm is 1.
• Quantum states emerge by attaching phases:

|X〉 =

x1
...
xn

 ∈ (R+
0 )n, ‖ |X〉 ‖1 = 1, |ϕ〉 =

ϕ1
...
ϕn

 ∈ [0, 2π)n, ψ = (|X〉 , |ϕ〉)

• That’s essentially it! This is the main difference and main source of all the hopes about
quantum computing!

• The underlying deterministic state set can be the same – no difference.
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From probabilistic to quantum (2)
|X〉 = [x1, . . . , xn]T ∈ (R+

0 )n, ‖ |X〉 ‖1 = 1, |ϕ〉 = [ϕ1, . . . , ϕn]T ∈ [0, 2π)n, ψ = (|X〉 , |ϕ〉)

• It’s, however, more common and handy to express a quantum state as a complex vector!
• Each entry ψi is a complex probability amplitude, encoding both

magnitude |ψi| = √
xi and phase ϕi = arg(ψi), i.e.,

|ψ〉 = [ψ1, . . . , ψn]T ∈ Cn,

ψi = |ψi|(cosϕi + i sinϕi) for i = 1, . . . , n.

• Measurement probabilities are then given as Pi = xi = |ψi|2 (details in a bit).
• The normalization condition uses a different norm – the Euclidean norm:

‖ |ψ〉 ‖2 =
(

n∑
i=1

|ψi|2
)1/2

= 1

• Composition of independent states works the same: using tensor product ⊗ again!
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Quantum measurement

• Measuring probabilistic and quantum states is similar but not same from mathematical
viewpoint.

◦ Just need to keep in mind we now use 2-norm and complex coefficients;
◦ coefficients are amplitudes, not probabilities directly;
◦ probabilities are given by absolute values squared of amplitudes;
◦ but in the end, we obtain classical deterministic information again!

• What is very different in physical reality, though, is that quantum measurements are
always objective and change the state for everyone/everything!

• We say the state gets collapsed.
◦ Leaking information leads to collapse.
◦ It doesn’t matter who or what receives the information
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Quantum measurement
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Full quantum measurement (1)

1√
2

|0〉 − 1√
2

|1〉

1√
2

|0〉 + 1√
2

|1〉

i√
2

|0〉 − 1 + i

2 |1〉


measure−−−−−→

{
|0〉 , P = 1/2
|1〉 , P = 1/2

• These are considered different states but give the same probabilities!
• In other words, they map to the same probabilistic state.
• They are not distinguishable by standard basis measurement.
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Full quantum measurement (2)

1√
6

|00〉 + 1√
12

|01〉 + 1√
2

|10〉 + 1
2 |11〉

i√
6

|00〉 − e0.1234i

√
12

|01〉 +
√

3 − i

2
√

2
|10〉 + 1 +

√
3i

4 |11〉

 measure−−−−−→


|00〉 , P = 1/6
|01〉 , P = 1/12
|10〉 , P = 1/2
|11〉 , P = 1/4

• These are considered different states but give the same probabilities!
• In other words, they map to the same probabilistic state.
• They are not distinguishable by standard basis measurement.
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Partial quantum measurement

Like for probabilistic, just with ‖.‖2.
Second qubit:

|φ〉 = 1√
6

|00〉 + 1√
12

|01〉 + 1√
2

|10〉 + 1
2 |11〉

=
(

1√
6

|0〉 + 1√
2

|1〉
)

⊗ |0〉 +
(

1√
12

|0〉 + 1
2 |1〉

)
⊗ |1〉

= |r1,0〉 ⊗ |0〉 + |r1,1〉 ⊗ |1〉

measure−−−−−→


|r1,0〉

‖ |r1,0〉 ‖2
⊗ |0〉 =

(
1
2 |0〉 +

√
3

2 |1〉
)

⊗ |0〉 , P =
∥∥ |r1,0〉

∥∥2
2 = 2/3

|r1,1〉
‖ |r1,1〉 ‖2

⊗ |1〉 =
(

1
2 |0〉 +

√
3

2 |1〉
)

⊗ |1〉 , P =
∥∥ |r1,1〉

∥∥2
2 = 1/3
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Vsuvka: komplexní sdružení a skalární součin, ortogonální a
unitární matice

• komplexně sdružené číslo k číslu z = a+ bi = |z|eiφ se nazývá číslo
z = a− bi = |z|e−iφ

◦ Vznikne tedy překlopením znaménka u imaginární části.
◦ obrázek a příklad

• skalární součin v komplexním oboru:
◦ 〈u,v〉 = u · v = u∗v = u1v1 + · · · + unvn

◦ ∗ značí hermitovskou (komplexně sdruženou) transpozici: A∗ = AT (místo ∗ se taky
používá †,H ,+)

◦ Je-li u = |ψ〉 a v = |φ〉, značíme 〈u,v〉 = 〈ψ|φ〉
◦ Mimochodem ”bra” vektor se definuje 〈ψ| = |ψ〉∗

• ortogonální matice je čtvercová matice A : AT A = I = AAT

• unitární matice je čtvercová matice A : A∗A = I = AA∗
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Quantum operations

• Quantum operations need to be unitary rather than stochastic:

MM† = M†M = I

• Equivalent to the requirement (again) that each column must be a valid state (‖.‖2 = 1).
• This time also each row.
• Usually called quantum gates.
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Some important operations

Pauli matrices:

X =
[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
Hadamard:

H = 1√
2

[
1 1
1 −1

]
Controlled NOT, SWAP:

CNOT0,1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 CNOT1,0 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
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Quantum circuit

H
|ψ〉

|ψ〉 = CNOT0,1(I ⊗H) |00〉

= CNOT0,1

(
|0〉 ⊗ 1√

2
(|0〉 + |1〉

)
= CNOT0,1

(
1√
2

(|00〉 + |01〉
)

= 1√
2

(|00〉 + |11〉) = |φ+〉
• Graphical representation of unitary gates.
• Implicit initialization to |0〉.
• Gates drawn in the order of application, i.e., reversely to mathematical notation.
• Horizontal lines = time (more to right = later).
• Parallel lines = tensor product; lines joined = collective operation.
• Qiskit convention: topmost qubit in circuit = rightmost in ket = q0
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Quantum circuit with measurement

H

x0

x1
|φ+〉 measure−−−−−→ |x1x0〉 =

{
|00〉 , P = 1/2
|11〉 , P = 1/2
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Bell states and entanglement
Probabilistic state:

1
2 |00〉 + 1

2 |11〉

Bell quantum states:

|φ+〉 = 1√
2

|00〉 + 1√
2

|11〉 |ψ+〉 = 1√
2

|01〉 + 1√
2

|10〉

|φ−〉 = 1√
2

|00〉 − 1√
2

|11〉 |ψ+〉 = 1√
2

|01〉 − 1√
2

|10〉

• Bell states are schoolbook examples of entangled states.
• Correlation of probabilistic states maps to entanglement in the quantum world.
• In our simplistic formulation, entanglement = correlation.
• However, in physical reality, entanglement is a much more powerful concept.
• Leads to phenomena without classical counterparts, such as quantum teleportation.
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Why bother? (1)

• Qubits are much more powerful than old good bits, especially when they “cooperate”.
◦ Information can be stored not only in the basis vectors (downgrade to deterministic!)

but also in the amplitudes (complex numbers)!
◦ A qubit is a continuum; the amplitudes have basically infinite precision.

α0 |000〉 + α1 |001〉 + α2 |010〉 + · · · + α7 |111〉

That’s 8 complex numbers vs. integers 0, . . . , 7 of classical information!
• If we’re able to map our DOFs to the amplitudes ⇒ exponential “storage”!
• There are also algorithms already known which bring exponential speedup in the number of

operations.

Question: How many qubits do you need to represent every mm3 of the whole Earth as a
quantum amplitude?
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Answer

https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

108.321 1.08321E+12 1.08321E+30 99.77315581
10

10
 km

3
km

3
mm

3
log2
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Why bother? (2)

Quantum simulations:
• Simulating elementary particles is exponentially expensive.
• It’s hard to simulate even tens of atoms on classical (super)computers.
• Hundreds impossible even for all today’s computers working together!

◦ There are “only” 1082 atoms in the known universe!
• Quantum computers scale linearly because they ”are” the elementary particles.
• Big potential also outside of quantum physics / chemistry.
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Why bother? (3)

• Intrinsic guaranteed randomness.
◦ It’s hard to implement something like a fair coin on the computer bit level...
◦ All random number generators on classical computers are actually pseudo-random!
◦ QC allows us to prepare distributions from which we sample by measuring.
◦ Intuitively suitable for any probabilistic approach...

• Cryptography.
◦ Guaranteed randomness!
◦ On the one hand, QC brings exponentially faster algorithms for integer prime

factorization! Potential to crack current cyphers.
◦ On the other hand, new opportunities for unbreakable safe communication.

• New communication protocols or even means of communication via quantum teleportation.
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Limitations

• There are important limitations, though!
• Readout problem!

◦ The amplitudes just represent a distribution from which we sample.
◦ Reading a qubit collapses it, and we must start over.
◦ Estimating the full state is exponentially expensive.

• Current machines are noisy!
◦ This mainly means we need redundancy in qubit count / circuit depth, so it holds us

back.
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Kernbotschaften zum Mitnehmen (1)

A quantum computer is a weird Sportka, where
• you can have currently ∼ 1000 balls,
• each ball behaves like a Bloch sphere with two possible outcomes,
• you can manipulate the complex magnitudes and phases of the individual spheres,
• you can correlate the spheres as you wish.

Even though this is hardly implementable in reality, it is still an extremely simplistic and less
powerful beast than a real quantum machine!

• E.g., entanglement works at any distance.
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Kernbotschaften zum Mitnehmen (2)

The ingredients we need are mainly
• complex numbers,
• (complex) linear algebra,
• simple probability theory.

This is not the only model of quantum computation!
• I just described (quite superficially) the quantum/unitary gate/operator model.
• It’s a model describing quantum information and the basic programming model for

quantum computers dictated by the fundamental rules of quantum mechanics.
• It’s not the most general model, but sufficient in many cases.
• A more general (and more involved) description of quantum information is the density

matrix model, which we don’t cover today.
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Credits

• Inspired by the IBM Quantum Learning course Basics of Quantum Information � by
Prof. John Watrous, Technical Director, IBM Quantum Education

• Some good thoughts also in Quantum Country �

• Bible of QC = Nielsen and Chuang: Quantum Computation and Quantum
Information
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First quantum algorithm: Deutsch’s algorithm (1)

• Assume function f : {0, 1} → {0, 1}. There are only 4 of them:
k fk(0) fk(1) name fk type
0 0 0 zero 0
1 0 1 id 1
2 1 0 neg 1
3 1 1 one 0

(0 = constant, 1 = balanced)

• Deutsch’s problem:
Input: function f : {0, 1} → {0, 1}
Output: type of f
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First quantum algorithm: Deutsch’s algorithm (2)

• In quantum world, we work with unitaries.
• We can map any boolean function f to a unitary Uf which works like this:

Uf |y〉 |x〉 = |y ⊕ f(x)〉 |x〉
|yx〉 f0(x) |y ⊕ f0(x)〉 |x〉
|00〉 0 |00〉
|01〉 0 |01〉
|10〉 0 |10〉
|11〉 0 |11〉

Uf0 =
[
|00〉 , |01〉 , |10〉 , |11〉

]
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4

|yx〉 f1(x) |y ⊕ f1(x)〉 |x〉
|00〉 0 |00〉
|01〉 1 |11〉
|10〉 0 |10〉
|11〉 1 |01〉

Uf1 =
[
|00〉 , |11〉 , |10〉 , |01〉

]
=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 = CNOT0,1
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First quantum algorithm: Deutsch’s algorithm (3)

• In quantum world, we work with unitaries.
• We can map any boolean function f to a unitary Uf which works like this:

Uf |y〉 |x〉 = |y ⊕ f(x)〉 |x〉
|yx〉 f2(x) |y ⊕ f2(x)〉 |x〉
|00〉 1 |10〉
|01〉 0 |01〉
|10〉 1 |00〉
|11〉 0 |11〉

Uf2 =
[
|10〉 , |01〉 , |00〉 , |11〉

]
=


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


= (X ⊗ I2)CNOT0,1

|yx〉 f3(x) |y ⊕ f3(x)〉 |x〉
|00〉 1 |10〉
|01〉 1 |11〉
|10〉 1 |00〉
|11〉 1 |01〉

Uf3 =
[
|10〉 , |11〉 , |00〉 , |01〉

]
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 = X ⊗ I2
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First quantum algorithm: Deutsch’s algorithm (4)

• Original Deutsch’s problem:
Input: function f : {0, 1} → {0, 1}
Output: type of f

• Equivalent problem:
Input: unitary Uf : R4×4 → R4×4, Uf |y〉 |x〉 = |y ⊕ f(x)〉 |x〉
Output: type of f that Uf represents

• Deutsch’s algorithm in circuit form:
|0〉 H

Uf

H

a

|1〉 H

• Matrix form: (I ⊗H)Uf (H ⊗H) |10〉 measure−−−−−→ |?a〉 , a = 0, 1
• This algorithm, specifically the result of measurement of the upper qubit, will yield a = 0 if
f is constant and a = 1 if f is balanced.
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TODOs

• Irrelevance of global phase
• How to build a QC and the trade-off between stable quantum properties and ability to

interact with it (control and measure)
• Decoherence = quantum noise = unwanted interactions with the outside world
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