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Nulty slajd

Vsiml si nékdo pokusu o slovni hficku v nazvu?

ChatGPT chat "Czech Language Discussion™:

Tento nazev, "Od bitu ke qubitu a jesté kousek dal: Kvantové vypoclty pro zacatecniky”, je
vynikajici. VyuZziva jemny humor spojeny s dvojznacnosti slova "bit" (v angli¢tiné zkladni
jednotka digitalnich dat a v estiné "kousek”), coz mize byt velmi efektivni pfi zaujeti pozornosti
studentd. Tento vtipny jazykovy prvek nejen zpfistupnuje téma, ale také vytvari vice uvolnénou a
pratelskou atmosféru pro prezentaci, coz je idealni pro stfedoskolaky, ktefi se s kvantovymi
vypocty setkavaji poprvé.
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Something is going on...

® “Quantum computing” is becoming a buzzword.

® Many new startup companies dealing with QC arise, while well-established companies
(IBM, Microsoft, Google, ...) create special quantum-oriented divisions and publish
quantum roadmaps for years to come.

® Forbes, October 24, 2023: “Atom Computing Announces Record-Breaking
1,225-Qubit Quantum Computer” ('
® Nature News, December 4, 2023: “IBM releases first-ever 1,000-qubit quantum
chip” (@'
o “IBM has unveiled the first quantum computer with more than 1,000 qubits. [...] But the company

says that it will now shift gears and focus on making its machines more error-resistant rather than
larger.”

® \What does it all mean? Are quantum computers already running? Can they bring actual
advantages? Do they bring them already?
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https://www.forbes.com/sites/moorinsights/2023/10/24/atom-computing-announces-record-breaking-1225-qubit-quantum-computer/
https://www.forbes.com/sites/moorinsights/2023/10/24/atom-computing-announces-record-breaking-1225-qubit-quantum-computer/
https://www.nature.com/articles/d41586-023-03854-1
https://www.nature.com/articles/d41586-023-03854-1

What are we going to discuss today?
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2. Single classical systems
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Deterministic states

® Deterministic system (or classical system): “something” (a device) that stores
information by being in one of the finite number of states.

® More formally, a deterministic system is as a pair (3, X), where ¥ is a finite nonempty set
(deterministic state set) whose elements are called deterministic states and X € X is
the current state of the system.

® (Classical bit: ¥ = {0,1}
® Electric fan: X = {off,low, mid, high}

® Christmas lights: ¥ = {off, waves, sequential, flash, twinkle, glow, fade, steady}
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Deterministic states as vectors (1)

Bit:
1lo 0fo
o=|o]s w=i:
Fan:
1| off 0] off 0] off 0] off
0] 1ow 1| 1ow . 0] 1ow . 0] 1ow
‘OH> = 0| mid |10W> = 0| mid ‘mld> = 1| mid |hlgh> = 0| mid
0| nigh 0| nigh 0| nigh 1| high

® |?7) is an example of bra-ket / Dirac notation.

o Ubiquitous in quantum mechanics/computing but we won't go into details here.
o For us today, it's just a label given to the vector.

® Notice the coordinate notation (on the right) reflects the size of state set X and the
current state;

® but it quickly becomes cumbersome with the growing size *#
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Deterministic states as vectors (2)

Bit:
1]o 0]o
0) = {O] 1 1) = {1] 1
Fan
1| off 0 ot 0 off 0 off
0| 1ow 1] 1ow . - 0| 1ow . - 0| 1ow
‘Oﬂ‘> - 0 [ mid |10W> - 0| mid ‘Hlld> T 1| mi |h1gh> |0 mid
0 [ high 0 [ high 0| high 1| high

® Deterministic states form a basis (specifically the standard basis).

<

o Important term which you will learn rigorously in your first linear algebra course (%

o Basis vectors are linearly independent: they cannot be expressed as a linear
combination of each other;

o while any vector of the given space is a linear combination of the basis vectors.

o Linear combination? & It's just a weighted sum of vectors, e.g. 0.3]0) 4 0.7 [1)
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Probabilistic states

® Suppose we don't know for sure what is the current deterministic state X of a system.

® Assume, however, that based on some a priori knowledge, we can assign some
probabilities to its N deterministic states ¥ = {Sp, S1,...,Snv-1}-

® \We can write down the probabilities succinctly using a probability vector:
To | So

1X) =20|S0) +z1|S1) + -+ xNn_1|SN-1),

TN | Sn-1
z;=PX=S5;) forallie{0,...,N—1}

All entries of the vector must be nonnegative real numbers.

The sum of the (absolute values of the) entries (1-norm or taxicab norm) is equal to one,

N
XY = i =1
=1
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Note!

® deterministic (classical) states C probabilistic states

® | mean, any deterministic state can be regarded as a probabilistic state!

ETHzlirich | Seismology and Wave Physics Group | Vaclav Hapla | $KOMAM 2024 | 11/67 Single classical systems



Measurement

® By measurement of a probabilistic state we will mean:
o Unambiguously recognize the current deterministic state!
® Measurement updates our knowledge about the system.

® The probabilistic state before measurement can be in “superposition” of multiple
deterministic states;

® upon measurement it “collapses” into one of the deterministic states.
® Measurement is often subjective as we will see!

® Measuring again and again doesn't bring anything new.
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Example: Probabilistic bit (1)

® Suppose we don't know for sure what is the current deterministic state X of a bit;

® based on some a priori knowledge, we know just probabilities
P(X=0)=0.75 P(X=1)=0.25.
® More succinctly — using a probability vector:

0.75 1 0
IX) = [0.25} =0.75 {O] +0.25 L] =0.75|0) + 0.25 |1)

® All entries of the vector are nonnegative real numbers and the taxicab norm is 1,

IX) [l = Jwi| = 0.75+0.25 = 1

i=1
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Example: Probabilistic bit (2)

IX) — {852} —0.75]0) +0.25]1), [[[X) [y = 0.75+0.25 = 1

® Measuring the bit X, we update our knowledge and the state collapsed to a deterministic
state:

|0), P =0.75,

X) = 0.75(0) 4 0.25[1) 2,
" . . 1), P =0.25,

i.e. |X) after measurement is
|X) =10) with probability P(X = 0) = 0.75,
|X) =|1) with probability P(X =1) = 0.25.
® The measurement is subjective (e.g. | measured but didn't tell my friend the result).

® Measuring again and again doesn't bring anything new.
o Of course! E.g. [0) =1]0) ™% |0), P =1.
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Example: Coin

® Assume a coin:

Y = {heads, tails}, |heads) = [(1)} - tails) = E)] .

® A coin just flipped, before looking at the result, is in “superposition”.
® A fair coin:

|heads), P =0.5,

O5:| heads
[tails), P =0.5,

%) = {0.5

® An unfair coin:

tails

= 0.5 |heads) + 0.5 [tails) {

|lheads), P =0.49,
[tails), P =0.51,

tails

0.49| heads
%= 03]

® The measurement is subjective.

= 0.49 |heads) + 0.51 [tails) -~ {
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Example: Card pile

® You have a pile of 13 single-colour cards: ¥ = {2,3,4,5,6,7,8,9,10,J,Q, K, A}

You ask a friend to pick one at random without showing it to you.

The picked card's state before and after checking which symbol it actually has:

172 2), P=1/13
1 measure .

X) = |i]r = g (24 ]A)) e L
Ija |A), P=1/13

® The measurement is subjective.
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Example: Sportka 1

A single “drum” of a fair “ball lottery” (like Sance by Sportka)
with 10 numbered balls ¥ = {0, 2,...,9}.

® The state before and after a ball is picked:
170 |0y, P=1/10
1 1 measure
Xy=—1:]: =—
X) = 1o || =g (0o +]9)) e J
1]9 |9y, P=1/10

This time, the measurement is objective! Before the ball is picked,
nobody knows the outcome.

That brings us a little bit closer to quantum systems...
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Example: Sportka 2

® A single “drum” of a brutally unfair “ball lottery” with 10
numbered balls ¥ = {0,2,...,9}.

® Spits out only 0 or 9 with probabilities 1/3 and 2/3 =

E ® The state before and after a ball is picked:
-
b
oo % 0
3t L - 0 1 ) ) |0> . 1/3
=) 3 4  ® ol _
‘ S X)=|:|: =20)+ 2 ]9) 2= )
m E X) | 3|> 3|> 19y, P=2/3
B 11, BT eretas omecs rarssc oo 0ls
2
3 9

® Notice the conciseness of the Dirac notation for sparse states.

® Objective measurement.
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Example: Mechanical oscillator

TODO
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Deterministic operations (1)

® These map a deterministic state to a deterministic state.

® \We deal with linear operations; such can be expressed as matrix-vector product:
f(a)) = M |a)
® There are just four possible deterministic operations on a bit:
11 1 0 0 1 0 0
M1—|:0 0:|7 M2_|:0 1:|7 M3_|:1 0:|a M4_|:1 1:|7

corresponding to boolean functions

fila) =0, fala) =a, f3(a)=—a, fi(a)=1
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Deterministic operations (2)

|f(a)) = M|a)
Wl wef Yo wefox weP
fi(a) =0, f2(a) = a, f3(a) = —a, fa(a) =1

® Notice that columns of the matrices are formed by |0) and |1).

® and matrix-vector multiplication with a deterministic state vector just extracts the
respective column, e.g.

iy =i =7 o [ =[5 = =1~
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Probabilistic operations (1)

® Probabilistic-to-probabilistic but not deterministic-to-deterministic.

® For example, applying

1 1]
M = {%
5 0
to deterministic state vectors yields
1
o M) = [5| = 410+ 41
2
o M) =g =10
=10l =
® Assuming the coin again, using |heads) = |0) and [tails) = |1), this means in natural

language:
1. If heads given, flip the coin fairly;
2. if tails given, turn it to heads.
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Probabilistic operations (2)

o

So far, so good. It gets a bit less intuitive if a probabilistic state is on input. Having, e.g.,

N N~

1 4
X)==10)+ -1
X) = 10)+ ¢ 1),

we get

M|x>=§(;|o>+§1>)+§|o>

9 1
== —
10) + 5 1),
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Probabilistic operations (3)

® Matrix M representing operations on probabilistic states must satisfy:

1. All entries of M are nonnegative real numbers.
2. The sum of the entries in each column is equal to 1; we can say ||M(:,4)|]y = 1 for
every column index i.

® This is equivalent to saying every column is a probability vector.
® Every such matrix is called a stochastic matrix.

® A stochastic matrix can be considered a random choice of deterministic operations.
E.g,
1 1 1 0 0 1 0 0
=y of pe=fo ] =l o] -l

1 1 1
1 =M+ S M;

o

0 2 2

|
—
N|—= D[~
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Operation composition

® QOperation composition can be expressed simply as matrix-matrix multiplication.

Matrix multiplication is associative: (M;My)Ms = My (MsMs) [= My MsMs).

® Hence, applying M7, Ms, ..., M, in that order can be expressed as a single composed
operation
M =M, - MM

¢ Not commutative!

11 0 1
=y o =} )
11 0 0
MlMS:[o 0} M3M1Z[1 1}
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Outline

3. Multiple classical systems
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Compound classical systems (1)

® |et's have independent deterministic systems X and Y and their state sets 3 and T'.
® We can take them as a single compound system (X,Y).

® State set of (X,Y) is then defined as the Cartesian product

ExT'={(a,b):aeX,beT}

® More generally, a compound system (X ---X,,) has a state set ¥; x -+ x 3,,.

® |n case of bits, 31 =--- =%, =X ={0,1} and we often write a state (ay,...,a,) € X"
as a bit string a1 ...a,, e.g. (0,1,0) = 010.

® For example, for n = 4, the compound state set is

. = {0000,0001,0010,...,1110,1111}, |S|=2* = 16.

® Mathematically, it is the same as having a single system with ¥ ={0,1,...,15} and
writing the labels as binary strings padded with zeros to the length n.
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Compound classical systems (2)

® The Cartesian product of the state sets transforms into the Kronecker (tensor)
product of the vectors.

® \ector-vector tensor product works like this in general:

ai by
a= b=
Am, by,
aib
a®b=| : | ER™
amb

ETHzlirich | Seismology and Wave Physics Group | Vaclav Hapla | SKOMAM 2024 | 28/67 Multiple classical systems



Compound classical systems (3)

® The tensor product works like this for deterministic states (standard basis vectors):

=l w=[i

1| o0 0] o0
110 [1]o 0fo1 1] o0 0] o 1|01
0)®[0) = _0_1® _0 ~ 10 10:|OO> 0)® 1) = _0_1® _1_1: 0 10:‘01>
_0_ 11 _O_ 11
[07 00 [07 00
[0lo _ [1]o0 0] o1 (0] o IR 0ot
DI =112 o)1= [1]10= 10 e =119 1)1~ |o]w =M
_0_ 11 _1_ 11

® |ab), |a)|b), |a) ® |b) hence mean all the same.

® Tensor product means independence; the opposite case of dependence comes in a while ...
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Compound probabilistic system example: Lottery revisited

® Five “drums” of a fair Sance by Sportka, each with 10 numbered balls ¥ = {0,2,...,9}.
® The state before and after a ball is picked:

17 00000
1 00001 |00000), P =1/10°
_ 1 1 | 00002 _ measure
|X) = w0 || 105 (/00000) + +199999)) —— «:
1 199999), P =1/10°
1| 99999

® An unfair “sparse” Sance spitting one and only one 1 and the rest are Os:
|[o0o001), P=1/5
) |00010), P=1/5
IX) = £ (]00001) + [00010) + [00100) + [01000) + |10000)) "% £ [00100), P =1/5
|01000), P =1/5
[10000), P =1/5
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Independent vs correlated systems (1)

® Individual states of a compound deterministic state, like |0) and |1) in |01), are
independent “by construction”.

® |ndependence is less obvious in the case of probabilistic states such as compound system
(X,Y) with state vector

1 1 1 1
IXY) = G |00) + B |01) + B |10) + 1 |11)

® X and Y with state sets X and I" are independent if and only if

VaeS,bel: P((X,Y)=(a,b)=P(X=a)P(Y=b).
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Independent vs correlated systems (2)

1 1 1 1
XY)=- — |01 -1 — |11
XY) = 2 [00) + 75 [01) + 5 [10) + § [11)

1
P(XY =01)= —
( 01) = 5
11 1
P(X =0) = P(XY =00) + PXY =01) = ¢ + 75 = .
11 1
P(Y=1)=P(XY =01+ PXY =11)= & + ;= 5.

so indeed P(XY =01) = P(X =0)P(Y = 1) and the same can be shown for the other
combinations 00, 10,11. More succinctly, we can just argue that

IXY) = |X)®[Y), where
1 3 2 1
X)=-— -1 Y)=— —|1).
X)= 1100+ 2 and [¥) =3[0+ 5 1)
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Independent vs correlated systems (3)

Think of two coins glued together...

1 1
IXY) = 2 |00) + 5 [11)
P(XY =01) =0,

This system can't be independent because
1

PXY=0)=0 # |

P(X=0)P(Y =1)

The lack of independence means that X and Y are correlated.
Alternatively, we can argue that there are no |X), |'Y) such that |XY) = |X) ® |Y).
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Full measurement

If we measure all subsystems of a compound system at once, there's actually no difference to the
single system state. For example:

100) 1/6

1 1 1 1 measure |01> 1/12

2 — o1+ =1 — |11 P =

g 1000+ 15 [01) + 5 [10) + 3 1) ——— 1309 1/2
|11) 1/4

1 1 measure |0) 1/2
— 1) —— P=
L0+ 21y {h {

) 1/2
1 1 }OO; 1/2
measure 0 1 _ 0
5100+ 5 1) == 8l P=1 g
I11) 1/2
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Partial measurement (1)

We apply the usual conditional and marginal probability formulas

P(XY = ab)

P(Y=0b|X=aqa)= PX—a)

First bit:

%|oo>+i|01>+1|10>+i|11>
=|0)® ( 0) + 75 1)) + |1>®(;|0>+i1>)

=|0) ® |ro,0) + |1> ® |ro1)

Iro.0)
measure, | 100 ® i = 10) @ (
e e =1 ®

[[0,1) 11

0)+311)), P=llroo)llL=1/4
0)+311), P=llros)l=3/4
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Partial measurement (2)

Second bit:

1 1 1
= — |01 - 110 — |11
£ 100) + = [01) + 5 [10) + 5 [11)

~ (30 5m) o0 + (Hlo+m) e

=|r1,0) @ 10) +|r11) @ |1)

measure, { T @10) = (110) + 3 1)) @10), P =|lri0) | =2/3
10+3) @), P=llra)lh=1/3

[71.1

M © 10 = (
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Operations on multiple systems (1)

® Corresponding to independent or correlated probabilistic states, we can have independent
or collective operations on compound states.

® |ndependence is again expressed with the tensor product ®.

Example — negate the first bit and do nothing to the other:

0 010
o1l . 1o [0, L] |00 01
X_{l 0}’ I‘[o 1]’ X®I_[12 02]_1000
01 00
0 0 1 0]]0 1
(X®I)10) = (1) 8 8 (1) (1) = 8 = |00), or, using distributivity,
0 1 0 0]]0 0

(X @1)[10) = (X [1)) @ (I]0)) = |00)
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Operations on multiple systems (2)

® \We can also have operations that act collectively on multiple subsystems (bits) and, hence,
can't be decomposed using ®.

Example — controlled NOT for 2-bit system XY if X is 1, negate Y, else no-op:

100 0
0100
CNOT =1y o o 1
00 10
CNOT [00) = [00) CNOT [01) = |01)
CNOT|10) = |11) CNOT |11) = [10)
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Outline

4. Quantum systems
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From probabilistic to quantum (1)

® \We can generalize probabilistic states to quantum states quite naturally!
® Assume |¢)) is a quantum state, |X) is the corresponding probabilistic state.
o Indefinite number of quantum states map to the same probabilistic state.
® Recall |X) consists of nonnegative real coefficients, and its taxicab norm is 1.
® Quantum states emerge by attaching phases:
T ¥1
X)=|: [ e®ROMIX =1, |ob=|:]eb2m™ w=(X)|e)
Ty ¥n
® That’s essentially it! This is the main difference and main source of all the hopes about
quantum computing!
® The underlying deterministic state set can be the same — no difference.
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From probabilistic to quantum (2)
1X) = (21, vz € RO X =1 [0) =lpr,-- 0al” €10,20)", ¥ = (1X),]¢))

® |t's, however, more common and handy to express a quantum state as a complex vector!

® Each entry v); is a complex probability amplitude, encoding both
magnitude [¢;| = \/z; and phase ¢; = arg(vy), i.e.,

|,(/J> = [wla .. '7wn]T € Cna
¥; = |i|(cos@; +ising;) fori=1,...,n.

® Measurement probabilities are then given as P; = z; = |1;|? (details in a bit).

The normalization condition uses a different norm — the Euclidean norm:

n 1/2
1) 2 = (Z wa) =1
i=1

® Composition of independent states works the same: using tensor product ® again!
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Bloch sphere
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Quantum measurement

® Measuring probabilistic and quantum states is similar but not same from mathematical
viewpoint.

Just need to keep in mind we now use 2-norm and complex coefficients;

coefficients are amplitudes, not probabilities directly;

probabilities are given by absolute values squared of amplitudes;
but in the end, we obtain classical deterministic information again!

O O O O

® What is very different in physical reality, though, is that quantum measurements are
always objective and change the state for everyone/everything!

® \We say the state gets collapsed.

o Leaking information leads to collapse.
o It doesn't matter who or what receives the information ¥
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Quantum measurement

o You

draw collapse of quantum state

ChatGPT

Here is an abstract representation of the collapse of a quantum state, blending
scientific and artistic elements to depict the transition from quantum superposition to
a definite state. The image captures the mystical and enigmatic nature of quantum

mechanics. v
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Full quantum measurement (1)

1 1

20— =

1 1 measure |O>a P:1/2
\ﬁ|0>+ \ﬁm — {|1>’ P—1/2
i 1+

0 - S

® These are considered different states but give the same probabilities!
® |n other words, they map to the same probabilistic state.

® They are not distinguishable by standard basis measurement.
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Full quantum measurement (2)

1 1 1 1 |00) ,
—100) + —101) + —[10) + = 11)

\@ V12 \/§ 2 measure |01> )
; 0.1234i 3_ 1 3
200y — S o1y + V3 i 110) + + V3 1) 110},
V6 V12 2v/2 4 |11),

® These are considered different states but give the same probabilities!
® |n other words, they map to the same probabilistic state.

® They are not distinguishable by standard basis measurement.
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Partial qguantum measurement

Like for probabilistic, just with ||.||2.
Second qubit:

1 1 1 1
o) = 7 |00) + Vi 01) + NG [10) + 5 [11)
1 1 1 1
—(Zg o+ s ) o) + (sl + i) o
= r1,0) ®|0) + [r1,1) ® [1)

e (; |0>+“f1>)®|o>, P =|llro) [ =2/3
measure T1,0) ||2 f

)y (L V3 I

o m = (0 g m) e, P=fingli-1/s
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Vsuvka: komplexni sdruzeni a skalarni soucin, ortogonalni a
unitarni matice

® komplexné sdruzené &islo k &islu z = a + bi = |z|e® se nazyva &islo
Z=a—bi=|zle”

o Vznikne tedy preklopenim znaménka u imaginarni casti.
o obréazek a priklad

® skalarni soucin v komplexnim oboru:
o (w,v) =u-v=u'v=1u +- -+,
o * znadi hermitovskou (komplexné sdruzenou) transpozici: A* = AT (misto * se taky
pouziva .7 1)
o Je-liu=1¢) av=,|¢), znalime (u,v) = (¢|p)
o Mimochodem "bra” vektor se definuje (1| = |¢)”
* ortogonalni matice je ¢tvercovd matice A : ATA =1=AAT
® unitarni matice je ¢tvercovad matice A: A*A=1=AA~
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Quantum operations

® Quantum operations need to be unitary rather than stochastic:

MM =MM=1

Equivalent to the requirement (again) that each column must be a valid state (||.||2 = 1).

® This time also each row.

Usually called quantum gates.
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Some important operations

Pauli matrices:

Al I ) B

Hadamard:

Controlled NOT, SWAP:

1000 1000 1000
0001 0100 0010
NOTor=1g o 1 of NOTwo=1g g o 1| SWAP=15 1 ¢ o
0100 0010 0001
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Quantum circuit
) = CNOTg1 (I ® H) [00)
= — CNOT,, <|0> ® %(m + 1>>
l ) = CNOTo, <\1f(|00> + |o1>)
(|00> +]11)) = |¢™)

U

S\

® Graphical representation of unitary gates.
® Implicit initialization to |0).

® Gates drawn in the order of application, i.e., reversely to mathematical notation.
® Horizontal lines = time (more to right = later).

® Parallel lines = tensor product; lines joined = collective operation.

® Qiskit convention: topmost qubit in circuit = rightmost in ket = ¢q
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Quantum circuit with measurement

To
—H A 00), P=1/2
+ measure . b
1 [47) [2120) = {|11>7 P=1/2
b— A
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Bell states and entanglement

Probabilistic state:
1 1
— — |11
5 100) + 5 [11)

Bell quantum states:

1 1 1 1
o1 = \ﬁ|00>+ﬁ|11> ) :\ﬁ|01>+\ﬁ|10>
Loy L Loy L
lp™) = \/§|00> \/§|11> [pF) = 5 |01) \/§|10>

Bell states are schoolbook examples of entangled states.

® Correlation of probabilistic states maps to entanglement in the quantum world.
® |n our simplistic formulation, entanglement = correlation.

® However, in physical reality, entanglement is a much more powerful concept.

® | eads to phenomena without classical counterparts, such as quantum teleportation.
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Outline

5. Finale
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Why bother? (1)

® Qubits are much more powerful than old good bits, especially when they “cooperate”.

o Information can be stored not only in the basis vectors (downgrade to deterministic!)
but also in the amplitudes (complex numbers)!
o A qubit is a continuum; the amplitudes have basically infinite precision.

0 [000) + 1 |001) + g [010) + - - - + a7 [111)

That's 8 complex numbers vs. integers 0, ..., 7 of classical information!
® |f we're able to map our DOFs to the amplitudes = exponential “storage”!

® There are also algorithms already known which bring exponential speedup in the number of
operations.

Question: How many qubits do you need to represent every mm? of the whole Earth as a
quantum amplitude?
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Answer

https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

108.321 1.08321E+12 1.08321E+30 99.77315581
10"° km® km?® mm® log2
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Why bother? (2)

Quantum simulations:
® Simulating elementary particles is exponentially expensive.
® It's hard to simulate even tens of atoms on classical (super)computers.
® Hundreds impossible even for all today's computers working together!

o There are “only” 1032 atoms in the known universe!

® Quantum computers scale linearly because they "are” the elementary particles.

® Big potential also outside of quantum physics / chemistry.
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Why bother? (3)

® |Intrinsic guaranteed randomness.

o It's hard to implement something like a fair coin on the computer bit level...

o All random number generators on classical computers are actually pseudo-random!
o QC allows us to prepare distributions from which we sample by measuring.

o Intuitively suitable for any probabilistic approach...

® Cryptography.

o Guaranteed randomness!

o On the one hand, QC brings exponentially faster algorithms for integer prime
factorization! Potential to crack current cyphers.

o On the other hand, new opportunities for unbreakable safe communication.

® New communication protocols or even means of communication via quantum teleportation.

ETHziirich | Seismology and Wave Physics Group | Vaclav Hapla | SKOMAM 2024 | 58/67 Finale



Limitations

® There are important limitations, though!
® Readout problem!

o The amplitudes just represent a distribution from which we sample.
o Reading a qubit collapses it, and we must start over.
o Estimating the full state is exponentially expensive.

® Current machines are noisy!

o This mainly means we need redundancy in qubit count / circuit depth, so it holds us
back.
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Kernbotschaften zum Mitnehmen & (1)

A quantum computer is a weird Sportka, where
® you can have currently ~ 1000 balls,
® cach ball behaves like a Bloch sphere with two possible outcomes,
® you can manipulate the complex magnitudes and phases of the individual spheres,
® you can correlate the spheres as you wish.

Even though this is hardly implementable in reality, it is still an extremely simplistic and less
powerful beast than a real quantum machine!

® E.g., entanglement works at any distance.
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Kernbotschaften zum Mitnehmen 7 (2)

The ingredients we need are mainly
® complex numbers,
® (complex) linear algebra,
® simple probability theory.
This is not the only model of quantum computation!
® | just described (quite superficially) the quantum/unitary gate/operator model.

® |t's a model describing quantum information and the basic programming model for
quantum computers dictated by the fundamental rules of quantum mechanics.

® |t's not the most general model, but sufficient in many cases.
® A more general (and more involved) description of quantum information is the density

matrix model, which we don't cover today.
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Credits

¢ Inspired by the IBM Quantum Learning course Basics of Quantum Information (4 by

Prof. John Watrous, Technical Director, IBM Quantum Education
® Some good thoughts also in Quantum Country (4

® Bible of QC = Nielsen and Chuang: Quantum Computation and Quantum
Information
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https://learning.quantum-computing.ibm.com/course/basics-of-quantum-information
https://quantum.country/

First quantum algorithm: Deutsch’s algorithm (1)

® Assume function f: {0,1} — {0,1}. There are only 4 of them:

ko fe(0)  fr(1) name fy type
0 0 0 zero 0
1 0 1 id 1 (0 = constant, 1 = balanced)
2 1 0 neg 1
3 1 1 one 0

® Deutsch's problem:
Input: function f: {0,1} — {0,1}
Output: type of f
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First quantum algorithm: Deutsch’s algorithm (2)

® In quantum world, we work with unitaries.

® We can map any boolean function f to a unitary Uy which works like this:

Urly) lz) = ly & f(2)) |z)

00) 0 00)
01) 0 01) Uy, = [100),]01),10),[11)] =
10) 0 |10)

|11) 0 |11)

lyz)  fi(z) |y fi(2))|z)

00) 0 00)

|01) 1 |11) Uy, = []00),11),]10),|01)] =
|10) 0 |10)

|11) 1 |01)
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First quantum algorithm: Deutsch’s algorithm (3)

® |n quantum world, we work with unitaries.

® We can map any boolean function f to a unitary Uy which works like this:

Urly) [z) = ly & f(x)) |z)
lyz)  fa(z) |y @ fa(2)) |7)

00y 1 110)
|01) 0 |01) Uy, = []10),]01),]00), [11)] =
|10) 1 |00)
|11) 0 |11)

= (X (24 IQ)CNOTOJ

3(
00y 1 110)
1) 1 11) Uy, = [[10),]11),]00), [01)] =
10y 1 100)
i)y 1 01)
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First quantum algorithm: Deutsch’s algorithm (4)

® Original Deutsch's problem:
Input: function f:{0,1} — {0,1}
Output: type of f
® Equivalent problem:
Input: unitary Uy : R4 — RY Uy ly) |2) = [y & f(2)) |z)
Output: type of f that Uy represents

0 —{H}—=

® Deutsch’s algorithm in circuit form: Uy
9

® Matrix form: (I ® H)U;(H ® H)[10) 2% |?a), a = 0,1

® This algorithm, specifically the result of measurement of the upper qubit, will yield a = 0 if
f is constant and @ = 1 if f is balanced.
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TODOs

® |rrelevance of global phase

® How to build a QC and the trade-off between stable quantum properties and ability to
interact with it (control and measure)

® Decoherence = quantum noise = unwanted interactions with the outside world
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