Institute of Mathematics of the Czech Academy of Sciences, Prague, Jan. 29, 2016

D. Lukáš

with Honeywell Int., Brno

Department of Applied Mathematics IT4Innovations VŠB–Technical University of Ostrava, Czech Rep. email: dalibor.lukas@vsb.cz http://homel.vsb.cz/~luk76

IT4Innovations národní superpočítačové centrum

Conference in honour of Prof. Dostál, May 25-27: cmse.it4i.cz

Scope of the conference

- Applied mathematics
- Numerical linear algebra
- Optimization methods
- Computational sciences
- High performance computing

Invited plenary speakers

- Rolf Krause (Università della Svizzera italiana)
- Ulrich Langer (Johannes Kepler University Linz)
- Jan Mandel (University of Colorado Denver)
- John Rasmussen (Aalborg University, Denmark)
- François-Xavier Roux (ONERA, University Paris 6)
- Joachim Schöberl (Vienna University of Technology)

Structural health monitoring of aircrafts

Difficulties: non-harmonic excitation pulses, freq. 10^5 Hz, $T = 10^{-3}$ s, locking effect

Outline

- . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning

Outline

- . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning

Geometry of a plate $\Omega := \widehat{\Omega} \times (-d/2, d/2)$

Elastic guided waves

are such harmonic solutions to the elastic wave equation

$$\rho \,\ddot{\mathbf{u}} - \operatorname{div} \boldsymbol{\sigma}(\mathbf{u}) = 0$$

that survive at large distances, e.g., the x_2 -invariant waves propagating in x_1

$$\mathbf{u}(x,t) = \widehat{\mathbf{u}}(x_3) e^{\mathrm{i}(\omega/c)(x_1 - ct)} = \widehat{\mathbf{u}}(x_3) e^{\mathrm{i}(\xi x_1 - \omega t)}, \text{ where } \xi = \omega/c.$$

Shear horizontal (SH) waves

The only nonvanishing component is

$$u_2(x,t) = \widehat{u}_2(x_3) \operatorname{e}^{\operatorname{i}(\xi x_1 - \omega t)},$$

which leads to

$$(c_{\rm S})^2 \left(\widehat{u}_2'' - \xi^2 \,\widehat{u}_2\right) = -\omega^2 \,\widehat{u}_2 \quad \rightsquigarrow \quad \widehat{u}_2(x_3) = C \,\cos(\eta \, x_3) + D \,\sin(\eta \, x_3)$$

with $\eta^2 = \left(\frac{\omega}{c}\right)^2 = \left(\frac{\omega}{c_{\rm S}}\right)^2 - \xi^2, \, (c_{\rm S})^2 = \frac{E}{2(1+\nu)\rho}.$

The constants C, D are determined as a nontrivial solution of the stress-free b.c. at $x_3 = \pm d$, which yields the symmetric $\hat{u}_2(x_3) = \cos\left(\frac{\omega}{c}x_3\right)$ and the antisymmetric $\hat{u}_2(x_3) = \sin\left(\frac{\omega}{c}x_3\right)$ SH modes with $\frac{\omega}{c}d = k\frac{\pi}{2}$, where the nonnegative integer k is odd in case of nonsymmetric modes.

Symmetric and antisymmetric SH dispersion curves

Theory of Lamb waves

Helmholtz decomposition of the displacement field

 $\mathbf{u} = \nabla \Phi + \nabla \times \mathbf{H}, \text{ where } \Phi(x_1, x_3; t) = f(x_3) e^{i(\xi x_1 - \omega t)}, \ \mathbf{H}(x_1, x_3; t) = \mathbf{h}(x_3) e^{i(\xi x_1 - \omega t)}$

leads to the pressure and shear wave equations

$$(c_{\rm P})^2 \Delta \Phi = \ddot{\Phi}, \quad (c_{\rm S})^2 \Delta \mathbf{H} = \ddot{\mathbf{H}} \text{ with } \nabla \cdot \mathbf{H} = 0,$$

respectively, where $(c_{\rm P})^2 = \frac{(1-\nu)E}{(1+\nu)(1-2\nu)\rho}$ and $(c_{\rm S})^2 = \frac{E}{2(1+\nu)\rho}$. Some of them read

$$(c_{\rm P})^2 (f'' - \xi^2 f) = -\omega^2 f \quad \rightsquigarrow \quad f(x_3) = A \cos(\alpha x_3) + B \sin(\alpha x_3),$$

$$(c_{\rm S})^2 (h''_3 - \xi^2 h_3) = -\omega^2 h_3 \quad \rightsquigarrow \quad h_3(x_3) = G \cos(\beta x_3) + H \sin(\beta x_3),$$

with $\alpha^2 = (\omega/c_{\rm P})^2 - \xi^2$, $\beta^2 = (\omega/c_{\rm S})^2 - \xi^2$.

The constants A, H are determined as a nontrivial solution of the stress-free b.c. at $z = \pm h/2$, which yields the characteristic equation for the symmetric Lamb waves. Similarly, determining B, G gives the antisymmetric Lamb waves.

Symmetric and antisymmetric Lamb dispersion curves

Outline

- . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning

Displacement finite elements for plates

Primal variational formulation of elastodynamics

$$\begin{cases} \rho \underbrace{\frac{\partial^2 u}{\partial t^2}(x,t) - \operatorname{div}\sigma(x,t) = 0}_{=:\ddot{u}} & \text{for } x \in \Omega, \ t \in (0, t_{\max}), \\ \sigma(x,t) \cdot n(x) = T(x,t) & \text{for } x \in \Gamma, \ t \in \langle 0, t_{\max} \rangle, \\ u(x,0) = 0 & \text{for } x \in \overline{\Omega}, \\ \frac{\partial u}{\partial t}(x,0) = 0 & \text{for } x \in \overline{\Omega}, \end{cases} \end{cases}$$

reads to find $u \in L^2(0, t_{\max}; [H^1(\Omega)]^3)$ satisfying the operator differential equation

$$\rho \ddot{u} + L(u) = T, \quad u(0) = 0, \quad \dot{u}(0) = 0$$

in the space $L^2(0, t_{\max}; [H^{-1}(\Omega)]^3)$, where

$$\langle L(u), v \rangle := 2 \mu \int_{\Omega} \varepsilon(u) : \varepsilon(v) + \lambda \int_{\Omega} \operatorname{div}(u) \operatorname{div}(v), \quad \langle T, v \rangle := \int_{\Gamma} T \cdot v.$$

Displacement finite elements for plates

Finite element semi-discretization

After a spatial finite element discretization we arrive at the system of ODEs

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{K}\mathbf{u} = \mathbf{T},$$

where ${\bf M}$ and ${\bf K}$ denotes the mass and stifness matrix, respectively. The FE-solution reads

$$\mathbf{u}(t) = \sum_{i} \frac{1}{\sqrt{\lambda_i}} \int_0^t \sin\left(\sqrt{\lambda_i}(t-\tau)\right) (\mathbf{v}_i \otimes \mathbf{v}_i) \cdot \mathbf{T}(\tau) \, d\tau, \quad \text{with } \mathbf{K} \, \mathbf{v}_i = \lambda_i \, \mathbf{M} \, \mathbf{v}_i, \quad \|\mathbf{v}_i\| = 1.$$

Time discretization: explicit leap-frog, implicit Newmark

We shall rather employ the explicit time scheme: $0 = t_0 < t_1 < \ldots, \Delta t = t_{k+1} - t_k$,

$$\mathbf{M}\ddot{\mathbf{u}}_{k} = -\mathbf{K}\mathbf{u}_{k-1} + \mathbf{T}_{k-1}, \quad \mathbf{u}_{k} := (\Delta t)^{2}\ddot{\mathbf{u}}_{k} + 2\mathbf{u}_{k-1} - \mathbf{u}_{k-2},$$

or the implicit, unconditionally stable Newmark scheme ($\beta := 1/4, \gamma := 1/2$):

$$\left\{\mathbf{M} + \beta(\Delta t)^{2}\mathbf{K}\right\}\ddot{\mathbf{u}}_{k+1} = \mathbf{F}_{k+1} - \mathbf{K}\,\mathbf{u}_{k+1/2}, \quad \mathbf{u}_{k+1} := \mathbf{u}_{k+1/2} + \beta\,(\Delta t)^{2}\,\ddot{\mathbf{u}}_{k+1}, \quad \dots$$

Outline

- . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning

Membranes, interaction of a wave with a crack

Planar stresses/forces ansatz: $\sigma_{ij}(x_1, x_2; t)$ for $i = 1, 2; \sigma_{i3} = \sigma_{3i} = 0$ leads to

 $u_i(x_1, x_2; t)$ for i = 1, 2; $u_3(x_1, x_2, x_3; t) = x_3 \varepsilon_{33}(x_1, x_2; t).$

Time step solver: Cholesky or PCG iterations.

Membranes: dispersion curve of a straight-crested wave

The straight-crested axial wave speed $c_{\rm L} = \sqrt{\frac{E}{(1-\nu^2)\rho}}$ is compared to a numerical counterpart relying on

$$\mathbf{P}^T \, \mathbf{K} \mathbf{P} \, \widetilde{\mathbf{v}}_i = \widetilde{\lambda}_i \, \mathbf{P}^T \, \mathbf{M} \, \mathbf{P} \, \widetilde{\mathbf{v}}_i,$$

where **P** is the projection matrix (onto x_2 -invariant functions).

Kirchhoff's plates, interaction of a wave with a crack

Kirchhoff's ansatz: $u_i(x_1, x_2, x_3; t) = -x_3 \underbrace{\frac{\partial w}{\partial x_i}(x_1, x_2; t)}_{\text{rotations}}$ for $i = 1, 2; u_3(x_1, x_2; t) = w(x_1, x_2; t)$. DKT FEM [Batoz et al '80, LeTallec et al '95]

Time step solver: Cholesky or PCG iterations.

Kirchhoff's plates: dispersion curve of a straight-crested wave

The straight-crested flexular wave speed $c_{\rm F}(df) = \sqrt[4]{\frac{E}{12\rho(1-\nu^2)}}\sqrt{2\pi df}$. is compared to numerics relying on

$$\mathbf{P}^T \, \mathbf{K} \mathbf{P} \, \widetilde{\mathbf{v}}_i = \widetilde{\lambda}_i \, \mathbf{P}^T \, \mathbf{M} \, \mathbf{P} \, \widetilde{\mathbf{v}}_i,$$

where **P** is the projection matrix (onto x_2 -invariant functions).

Outline

- . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning

Example of bilinear-in-plane and cubic-in-thickness (p = 3) elements $3 \cdot 8 = 24 \mod + 3(p-1) \cdot 4 = 12(p-1)$ vertical edge DOFs

p = 3 includes SH A₀-mode

J linear-in-thickness plate (straight-crested) SH dispersion curve A0: analytical (red) vers. FEM apprc

p = 6 includes SH S₁-mode

I linear-in-thickness plate (straight-crested) SH dispersion curve S1: analytical (red) vers. FEM apprc

Neither p = 3 or p = 6 imitates Lamb modes

Displacement finite elements for plates

Shear locking effect (of bending modes?)

Convergence of 3d primal FEM suffers from $\frac{\operatorname{diam}\Omega}{d}$ entering Korn's ellipticity constant.

Outline

— . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning

Mixed elastic finite elements

Weak formulation of elasticity

Given (extensions of) boundary data (t, g) we shall find stresses $\sigma \in \Sigma_0 + t$ and displacements $u \in V_0 + g$ satisfying linearized Hooke's law

$$\langle A \sigma, \tau \rangle_{\Sigma^* \times \Sigma} - \langle \varepsilon(u), \tau \rangle_{\Sigma^* \times \Sigma} = 0 \quad \forall \tau \in \Sigma_0,$$

where $\varepsilon(u) := \frac{1}{2}(\nabla u + (\nabla u)^T)$, and the force equilibrium

$$\langle \operatorname{div} \sigma, v \rangle_{V^* \times V} = -\langle f, v \rangle_{V^* \times V} \quad \forall v \in V_0.$$

Primal formulation: $\Sigma := \Sigma_0 := [L^2(\Omega)]^{3 \times 3}_{\text{sym}}, V := [H^1(\Omega)]^3$

Since $\sigma = A^{-1} \varepsilon(u)$ pointwise, we are left to find $u \in V_g := \{u \in V : u = g \text{ on } \Gamma_{\mathrm{D}}\}$: $\int_{\Omega} A^{-1} \varepsilon(u) : \varepsilon(v) = \int_{\Omega} f \cdot v + \int_{\Gamma_{\mathrm{N}}} t \cdot v \quad \forall v \in V_0.$

Mixed elastic finite elements

Mixed formulation: $\Sigma := [H(\operatorname{div}; \Omega)]_{\operatorname{sym}}^{3 \times 3}, V := V_0 := [L^2(\Omega)]^3$ Find $\sigma \in \Sigma_t := \{\sigma \in \Sigma : \sigma_n = t \text{ on } \Gamma_N\}$ and $u \in V$: $\int_{\Omega} \sigma : \tau + \int_{\Omega} \operatorname{div} \tau \cdot u \qquad = \int_{\Gamma_D} \tau_n \cdot g \qquad \forall \tau \in \Sigma_0,$ $\int_{\Omega} \operatorname{div} \sigma \cdot v \qquad = -\int_{\Omega} f \cdot v \qquad \forall v \in V$

Schöberl & Pechstein (born Sinwel) '09: $V := H(\operatorname{curl}; \Omega) \rightsquigarrow \ldots$

Denote $H^{-1}(\Omega) := \left(H^1_{\Gamma_{\rm D},0}(\Omega)\right)^*, V_0 := \{v \in H(\operatorname{curl}; \Omega) : v_t = 0 \text{ on } \Gamma_{\rm D}\}.$ Then, $(V_0)^* = H^{-1}(\operatorname{div}; \Omega) := \{q \in [H^{-1}(\Omega)]^3 : \operatorname{div} q \in H^{-1}(\Omega)\}.$

The required regularity $\sigma \in [L^2(\Omega)]^{3\times 3}_{\text{sym}}$, div $\sigma \in H^{-1}(\text{div}; \Omega)$ leads to the new space $\dots \rightsquigarrow \sigma \in \Sigma := H^{-1}(\text{div} \operatorname{div}; \Omega).$

Outline

— . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning

 $H^{-1}(\operatorname{div}\operatorname{div};\Omega)$ -conformity \approx continuity of normal-normal (NN) stresses Distributional divergence. For $v \in [C_0^{\infty}(\Omega)]^3$:

$$\begin{aligned} \langle \operatorname{div} \sigma, v \rangle_{V^* \times V} &:= -\int_{\Omega} \sigma : \nabla v = \sum_{\operatorname{elems} T} \left\{ \int_{T} \operatorname{div} \sigma \cdot v - \int_{\partial T} \sigma_{nt} \cdot v_t \right\} - \sum_{\operatorname{faces} F} \int_{F} \underbrace{[\sigma_{nn}]}_{=0} v_n \\ &\leq \sum_{\operatorname{elems} T} \left\{ \|\operatorname{div} \sigma\|_{0,T} \|v\|_{0,T} + \|\sigma_{nt}\|_{\frac{1}{2},\partial T} \|v_t\|_{-\frac{1}{2},\partial T} \right\} \leq C(\sigma) \|v\|_{\operatorname{curl},\Omega}. \end{aligned}$$

By density, the continuous functional can be extended to $H(\operatorname{curl}; \Omega)$.

 $\begin{array}{ll} \textbf{Mixed TD-NNS formulation: } \Sigma := H^{-1}(\operatorname{div}\operatorname{div};\Omega), \ V := H(\operatorname{curl};\Omega) \\ & \text{Find } \sigma \in \Sigma_{t_n} := \{\sigma \in \Sigma : \sigma_{nn} = t_n \text{ on } \Gamma_{\mathrm{N}}\}, \ u \in V_{g_t} := \{u \in V : u_t = g_t \text{ on } \Gamma_{\mathrm{D}}\}: \\ & \int_{\Omega} \sigma : \tau + \langle \operatorname{div} \tau, u \rangle_{V^* \times V} & = \int_{\Gamma_{\mathrm{D}}} \tau_{nn} g_n & \forall \tau \in \Sigma_0, \\ & \langle \operatorname{div} \sigma, v \rangle_{V^* \times V} & = -\int_{\Omega} f \cdot v + \int_{\Gamma_{\mathrm{N}}} t_t \cdot v_t & \forall v \in V_0 \end{array}$

Abstract theory of mixed formulations, inf-sup condition

H-spaces $\Sigma, V, B \in \mathcal{L}(\Sigma, V^*), A \in \mathcal{L}(\Sigma, \Sigma^*)$ is Ker B-elliptic, $g \in \Sigma^*, f \in \text{Im } B$.

$$A \sigma + B^T u = g \text{ on } \Sigma^*$$

$$B \sigma = f \text{ on } V^*$$
(1)
(2)

From (2): $\sigma = \sigma_o + \sigma_f$, where $B \sigma_f = f$, and from (1): $\sigma_0 \in \text{Ker } B$ uniquely solves

$$\langle A \sigma_0, \tau_0 \rangle_{\Sigma^* \times \Sigma} = \langle g - A \sigma_f, \tau_0 \rangle_{\Sigma^* \times \Sigma} \quad \forall \tau_0 \in \operatorname{Ker} B.$$

It remains to find $u \in V$:

$$\langle B \tau_{\perp}, u \rangle_{V^* \times V} = - \langle A \sigma, \tau_{\perp} \rangle_{\Sigma^* \times \Sigma} \quad \forall \tau_{\perp} \in (\operatorname{Ker} B)^{\perp}.$$

The existence follows from the $(\text{Ker }B)^{\perp}$ -coercivity, the so-called inf-sup condition

 $||B\sigma||_{\Sigma^*} \ge \delta ||v||_V.$

Displacements: Nédélec-II hexahedron

Consider hexahedron $T := (0, h_x) \times (0, h_y) \times (0, h_z)$ with (potentially) $h_x, h_y \gg h_z$. We choose the lowest-order Nédelec-II $H(\operatorname{curl}; \Omega)$ -conforming element:

 $v_x, v_y \in P^1 \otimes P^1 \otimes P^2$ and $v_z \in P^2 \otimes P^2 \otimes P^1$.

Tangential continuity \rightarrow 2 DOFs per edge, 4 DOFs per vertical face, and 2 bubbles.

Stresses: discrete inf-sup cond. \rightsquigarrow stable TD-NNS hexahedron [L.'16]

Analysis of the discrete inf-sup condition in the discrete broken norms

$$\|u\|_{V^{h}}^{2} := \sum_{\text{elems } T} \|\varepsilon(u)\|_{0,T}^{2} + \sum_{\text{faces } F} \frac{1}{h_{F}} \|[u_{n}]\|_{0,F}^{2}, \quad \|\sigma\|_{\Sigma^{h}}^{2} := \sum_{\text{elems } T} \|\sigma\|_{0,T}^{2} + \sum_{\text{faces } F} \|\sigma_{nn}\|_{0,F}$$

and normal-normal continuity yield 6 DOFs per vertical face, 9 DOFs per horizontal face, and 57 bubbles.

The analysis of S.&P. gets rid of Korn's inequality and h_x/h_z , i.e., locking-free elements.

Mixed TD-NNS variational formulation of elastodynamics

reads to find
$$\sigma \in L^2(0, t_{\max}; \underbrace{H(\operatorname{div} \operatorname{div}; \Omega)}_{=:\Sigma})$$
 and $u \in L^2(0, t_{\max}; \underbrace{H(\operatorname{curl}; \Omega)}_{=:V})$ satisfying
 $u(0) = 0, \quad \dot{u}(0) = 0, \quad \sigma_{nn} = T_n \text{ on } \Gamma$

and
$$\int_{\Omega} A\sigma : \tau + \langle \operatorname{div} \tau, u \rangle_{V} = 0; \quad \langle \operatorname{div} \sigma, v \rangle - \rho \langle \ddot{u}, v \rangle = \int_{\Gamma} T_{t} \cdot v_{t}$$
for all $\tau \in L^{2}(0, t_{\max}; \Sigma_{0})$ and $v \in L^{2}(0, t_{\max}; V)$.

Finite element semi-discretization and the Newmark method lead to find $\boldsymbol{\sigma}_{k+1} := \boldsymbol{\sigma}_{k+1}^{H} + \boldsymbol{\sigma}^{P}(\mathbf{T}_{k+1})$ and \mathbf{u}_{k+1} such that $\begin{pmatrix} \frac{1}{\beta(\Delta t)^{2}}\mathbf{A} & \mathbf{B} \\ \mathbf{B}^{T} & -\mathbf{M} \end{pmatrix} \begin{pmatrix} \boldsymbol{\sigma}_{k+1}^{H} \\ \ddot{\mathbf{u}}_{k+1} \end{pmatrix} = \begin{pmatrix} \frac{1}{\beta(\Delta t)^{2}} \left(-\mathbf{A} \, \boldsymbol{\sigma}^{P}(\mathbf{T}_{k+1}) - \mathbf{B} \, \ddot{\mathbf{u}}_{k+1/2}\right) \\ -\mathbf{B}^{T} \, \boldsymbol{\sigma}^{P}(\mathbf{T}_{k+1}) \end{pmatrix},$ $\mathbf{u}_{k+1} := \mathbf{u}_{k+1/2} + \beta \, (\Delta t)^{2} \, \ddot{\mathbf{u}}_{k+1}, \dots$

Outline

— . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning

Numerical dispersion analysis [L. & Schöberl '16]

Eigenvalue quasi-periodic problem on 1 element \rightsquigarrow dispersion $\kappa(\omega)$ Find $\lambda = e^{i \kappa h_x} \in \mathbb{C}$ and (σ, u) :

mixed elasticity :

$$A \sigma + B^{T} u = 0,$$

$$B \sigma + \omega^{2} M u = 0,$$
+ quasi-periodic b.c. in x :

$$u(0, y, z) = \lambda u(h, y, z),$$

$$\sigma_{n}(0, y, z) = -\lambda \sigma_{n}(h, y, z),$$
+ periodic b.c. in y :

$$u(x, 0, z) = u(x.h, z),$$

$$\sigma_{n}(x, 0, z) = -\sigma_{n}(x, h, z),$$
+ sym./antisym. b.c. in z :

$$u(x, y, 0) = \pm u(x, y, h_{z}),$$

$$\sigma_{n}(x, y, 0) = \sigma_{n}(x, y, h_{x}) = 0.$$

Numerical dispersion analysis [L. & Schöberl '16]

Numerical (3 layers) vers. analytical (solid lines) dispersion analysis

Numerical dispersion analysis [L. & Schöberl '16]

Robustness w.r.t. thickness: 1x1x0.1 mm (blue) vers. 1x1x1 mm (red)

Outline

— . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning

3d tensor-product TD-NNS: 24+16+2 displs., 0+42+57 stresses

Let's get rid of stress (57 bubbles).

Hybridization

$$\begin{pmatrix} \frac{1}{\beta (\Delta t)^2} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & -\mathbf{M} \end{pmatrix} \begin{pmatrix} \boldsymbol{\sigma}_{k+1}^H \\ \ddot{\mathbf{u}}_{k+1} \end{pmatrix} = \begin{pmatrix} \frac{1}{\beta (\Delta t)^2} \left(-\mathbf{A} \, \boldsymbol{\sigma}^P(\mathbf{T}_{k+1}) - \mathbf{B} \, \ddot{\mathbf{u}}_{k+1/2} \right) \\ -\mathbf{B}^T \, \boldsymbol{\sigma}^P(\mathbf{T}_{k+1}) \end{pmatrix},$$

We shall tear and interconnect the stress DOFs so that

- the stresses are left elementwise discontinuous,
- \bullet the continuity across faces is re-inforced by additional Lagrange multipliers $\pmb{\lambda}$ that are related to normal displacements,
- and the stresses are statically condensated.

This leads to a new purely displacement spd system (elementwise assembly):

$$\begin{pmatrix} \mathbf{M} + \beta \, (\Delta t)^2 \, \widetilde{\mathbf{B}}^T \, \widetilde{\mathbf{A}}^{-1} \, \widetilde{\mathbf{B}} &, \beta \, (\Delta t)^2 \, \widetilde{\mathbf{B}}^T \, \widetilde{\mathbf{A}}^{-1} \, \mathbf{C} \\ \beta \, (\Delta t)^2 \, \mathbf{C}^T \, \widetilde{\mathbf{A}}^{-1} \, \widetilde{\mathbf{B}} &, \beta \, (\Delta t)^2 \, \mathbf{C}^T \, \widetilde{\mathbf{A}}^{-1} \, \mathbf{C} \end{pmatrix} \begin{pmatrix} \ddot{\mathbf{u}}_{k+1} \\ \boldsymbol{\lambda}_{k+1} \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \end{pmatrix}$$

with the sign (interconnecting face DOFs) matrix \mathbf{C} .

Parallel preconditioning

Since $\Delta t \approx 10^{-7}$, the matrix

$$\begin{pmatrix} \mathbf{M} + \beta \, (\Delta t)^2 \, \widetilde{\mathbf{B}}^T \, \widetilde{\mathbf{A}}^{-1} \, \widetilde{\mathbf{B}} &, \beta \, (\Delta t)^2 \, \widetilde{\mathbf{B}}^T \, \widetilde{\mathbf{A}}^{-1} \, \mathbf{C} \\ \beta \, (\Delta t)^2 \, \mathbf{C}^T \, \widetilde{\mathbf{A}}^{-1} \, \widetilde{\mathbf{B}} &, \beta \, (\Delta t)^2 \, \mathbf{C}^T \, \widetilde{\mathbf{A}}^{-1} \, \mathbf{C} \end{pmatrix}$$

is mass dominant. When the Matlab Cholesky decomposition fails, we employ PCG preconditioned as follows:

- 3 multiplicative (Richardson) smoothing steps.
- \bullet One smoothing consists of N (number of cores) additive (overlapping Schwarz) nested smoothers.
- The nested smoother comprises, as proposed by Joachim Schöberl, solutions to local patch subproblems around vertical edges, assembled multiplicatively(Gauss-Seidel).

Early experiments in 3d, 1M DOFs, rel. prec. 10^{-9} : $N = 1 \rightsquigarrow 5$ PCG iterations, $N = 24 \rightsquigarrow 10$ PCG iterations.

Interaction of short-pulse waves with surface cracks

Outline

— . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning
- Outlook: towards multigrid and DDM

Damage sensitivity, optimization of actuator-crack-sensor trajectories

Outline

— . . .

- Elastic guided waves in plates
- Displacement finite elements for plates
 - 2d membranes and Kirchhoff's plates
 - 3d bricks enhanced with vertical edge polynomials
- Mixed TD-NNS tensor-product elements
 - Mixed elastic finite elements
 - Tangential displacements normal-normal stresses (TD-NNS)
 - Numerical dispersion analysis
 - Hybridization, parallel preconditioning

Outlook: Multigrid for hybridized tensor-product TD-NNS

Interpolation $\mathbf{I}_{H,h}$ via the natural embedding, H = 2h, $\mathbf{A}^h := (\mathbf{I}_{H,h})^T \mathbf{A}^H \mathbf{I}_{H,h}$.

Outlook: Primal DDM [BPS'86; LBVM'15] for tensor-prod. TD-NNS

$$\overline{\Omega} = \bigcup_{i=1}^{N} \overline{\Omega_{i}}, \quad \Gamma := \bigcup_{i=1}^{N} \partial \Omega_{i} \setminus \partial \Omega,$$

$$\diamond \dots \text{ subdomain interior nodes (I) } \rightsquigarrow V_{\mathrm{I}}$$

$$\diamond \dots \text{ edge interior nodes (E)}$$

$$\Box \dots \text{ vertex coarse nodes (V)} \end{cases} \rightsquigarrow V_{\Gamma}$$

$$V = \left(\underbrace{V_{1} \oplus_{a} \cdots \oplus_{a} V_{N}}_{=:V_{I}}\right) + \left(\underbrace{V_{E} + V_{V}}_{=:V_{\Gamma}}\right), \quad \mathbf{A} = \begin{pmatrix}\mathbf{A}_{II} & \mathbf{A}_{I\Gamma}\\\mathbf{A}_{\Gamma I} & \mathbf{A}_{\Gamma\Gamma}\end{pmatrix}, \quad \mathbf{S} := \mathbf{A}_{\Gamma\Gamma} - \mathbf{A}_{\Gamma I} \mathbf{A}_{II}^{-1} \mathbf{A}_{I\Gamma}$$
$$\mathbf{S} = \begin{pmatrix}\mathbf{S}_{EE} & \mathbf{S}_{EV}\\\mathbf{S}_{VE} & \mathbf{S}_{VV}\end{pmatrix} \approx \widehat{\mathbf{S}} := \mathbf{I} \begin{pmatrix}\operatorname{blkdiag}(\mathbf{S}_{EE}) & \mathbf{0}\\\mathbf{0} & \mathbf{A}^{H}\end{pmatrix} \mathbf{I}^{T}, \quad \operatorname{cond}(\widehat{\mathbf{S}}^{-1}\mathbf{S}) = O\left((1 + \log(H/h))^{2}\right).$$