Tensor Numerical Methods Fundamental principles and application to TEI calculations

Martin Mrovec

Katedra aplikované matematiky FEI VŠB-TU Ostrava, IT4Innovations

29. 3. 2016

0. Motivation

Consider a real rectangular matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{v} \in \mathbb{R}^{n}$. Computation of matrix vector product

$$\mathbf{A}\mathbf{v} = \mathbf{x} \in \mathbb{R}^m \tag{1}$$

costs n^2 operations.

Consider a real rectangular matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{v} \in \mathbb{R}^{n}$. Computation of matrix vector product

$$\mathbf{A}\mathbf{v} = \mathbf{x} \in \mathbb{R}^m \tag{1}$$

costs n^2 operations.

If we know the Singular Value Decomposition of A:

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}} \tag{2}$$

where $\mathbf{U} \in \mathbb{R}^{n \times r}$, $\mathbf{V} \in \mathbb{R}^{n \times r}$ are orthonormal matrices, $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal matrix and $r = \operatorname{rank}(\mathbf{A})$, we can rewrite (1) as

$$\mathbf{USV}^{T}\mathbf{v} = \mathbf{x}.$$
 (3)

WHY?

イロト 不問 トイヨト イヨト

SVD

WHY?

For simplicity consider an orthogonal (generally not orthonormal) matrix $\tilde{\mathbf{V}} = \left(\mathbf{S}\mathbf{V}^{T}\right)^{T}$, so

$$\mathbf{A} = \mathbf{U}\tilde{\mathbf{V}}^{T}.$$
 (4)

In case of low-rank matrix ($r \ll n$) the matrix vector multiplication using SVD is much cheaper:

SVD

WHY?

For simplicity consider an orthogonal (generally not orthonormal) matrix $\tilde{\mathbf{V}} = \left(\mathbf{S}\mathbf{V}^{T}\right)^{T}$, so

$$\mathbf{A} = \mathbf{U}\tilde{\mathbf{V}}^{\mathsf{T}}.$$
 (4)

In case of low-rank matrix ($r \ll n$) the matrix vector multiplication using SVD is much cheaper:

$$\mathbf{V}^T \mathbf{v} = \mathbf{z} \dots rn$$

A B + A B +

SVD

WHY?

For simplicity consider an orthogonal (generally not orthonormal) matrix $\tilde{\mathbf{V}} = \left(\mathbf{S}\mathbf{V}^{T}\right)^{T}$, so

$$\mathbf{A} = \mathbf{U}\tilde{\mathbf{V}}^{T}.$$
 (4)

In case of low-rank matrix ($r \ll n$) the matrix vector multiplication using SVD is much cheaper:

$$\mathbf{V}^T \mathbf{v} = \mathbf{z} \dots rn$$

 $\mathbf{U}\mathbf{z} = \mathbf{x} \dots rn$

WHY?

For simplicity consider an orthogonal (generally not orthonormal) matrix $ilde{\mathbf{V}} = \left(\mathbf{S} \mathbf{V}^{\mathcal{T}}
ight)^{\mathcal{T}}$, so

$$\mathbf{A} = \mathbf{U}\tilde{\mathbf{V}}^{T}.$$
 (4)

In case of low-rank matrix ($r \ll n$) the matrix vector multiplication using SVD is much cheaper:

$$\mathbf{V}^{T}\mathbf{v} = \mathbf{z} \dots rn$$
$$\mathbf{U}\mathbf{z} = \mathbf{x} \dots rn$$
$$\mathbf{U}\mathbf{V}^{T}\mathbf{v} = \mathbf{z} \qquad 2rn \ll n^{2}$$

$$\mathbf{J}\mathbf{V}^{T}\mathbf{v}=\mathbf{z}\quad \ldots\quad 2rn\ll n^{2}$$

WHY?

For simplicity consider an orthogonal (generally not orthonormal) matrix $\tilde{\mathbf{V}} = \left(\mathbf{S}\mathbf{V}^{T}\right)^{T}$, so

$$\mathbf{A} = \mathbf{U}\tilde{\mathbf{V}}^{T}.$$
 (4)

In case of low-rank matrix ($r \ll n$) the matrix vector multiplication using SVD is much cheaper:

$$\mathbf{V}^{T}\mathbf{v} = \mathbf{z} \quad \dots \quad rn$$
$$\mathbf{U}\mathbf{z} = \mathbf{x} \quad \dots \quad rn$$
$$\mathbf{U}\mathbf{V}^{T}\mathbf{v} = \mathbf{z} \qquad 2rn \ll n^{2}$$

However, rank r does not have to be low.

Martin Mrovec

Solution = Truncated SVD Let \mathbf{USV}^{T} be the SVD decomposition of \mathbf{A} . Without loss of generality consider a non-increasing sequence of singular values

$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n \ge 0, \tag{5}$$

so $\mathbf{S} = \text{diag}([\sigma_1, \sigma_2, \dots, \sigma_n])$. Set

$$\mathbf{S}_{k} = \operatorname{diag}\left(\left[\sigma_{1}, \sigma_{2}, \dots, \sigma_{k}, 0, \dots, 0\right]\right) \in \mathbb{R}^{n \times n}$$
(6)

$$\overline{\mathbf{S}}_{k} = \operatorname{diag}\left(\left[\sigma_{1}, \sigma_{2}, \dots, \sigma_{k}\right]\right) \in \mathbb{R}^{k \times k}$$
(7)

and matrices $\overline{\mathbf{U}}_k, \overline{\mathbf{V}}_k$ as first k columns of matrices \mathbf{U}, \mathbf{V} . Define

$$\mathbf{A}_{k} := \mathbf{U}\mathbf{S}_{k}\mathbf{V}^{T} = \overline{\mathbf{U}}_{k}\overline{\mathbf{S}}_{k}\overline{\mathbf{V}}_{k}^{T}.$$
(8)

Martin Mrovec

$$\mathbf{A}_k := \mathbf{U}\mathbf{S}_k\mathbf{V}^T = \overline{\mathbf{U}}_k\overline{\mathbf{S}}_k\overline{\mathbf{V}}_k^T.$$

Then \mathbf{A}_k is the best rank-k approximation of \mathbf{A} , i.e.

$$\|\mathbf{A} - \mathbf{B}\| \ge \|\mathbf{A} - \mathbf{A}_k\|, \text{ rank}(\mathbf{B}) \le k.$$
(9)

(Eckart-Young Theorem). Error of approximation:

$$\|\mathbf{A} - \mathbf{A}_k\|_F = \sqrt{\sum_{i=k+1}^n \sigma_i^2}$$
(10)

Figure: Singular values of discretized 2D laplacian (matrix 100×100).

Figure: Singular values of discretized function $f(x, y) = \sin(x + y)\cos(xy) - y^2\cos(x)$ on interval $[0, 2\pi] \times [0, 2\pi]$ (matrix 100×100).

Figure: Singular values of discretized function $f(x, y) = \sin(x + y)\cos(xy) - y^2\cos(x)$ on interval $[0, 2\pi] \times [0, 2\pi]$ (matrix 100 × 100). Logarithmic scale.

Definition

A tensor of order d (N-d tensor) is a multidimensional array over a d-tuple index set,

$$\mathbf{A} \in \mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}, \ \left[\mathbf{A}\right]_{i_1 i_2 \ldots i_d} = \mathbf{a}_{i_1 i_2 \ldots i_d} \in \mathbb{R}.$$
(11)

Definition

A tensor of order d (N-d tensor) is a multidimensional array over a d-tuple index set,

$$\mathbf{A} \in \mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}, \ [\mathbf{A}]_{i_1 i_2 \ldots i_d} = a_{i_1 i_2 \ldots i_d} \in \mathbb{R}.$$
(11)

An N-d tensor = an element of a tensor-product Hilbert space (finite dimensional)

$$\mathbb{W}_{\mathbf{n}} \equiv \mathbb{W}_{\mathbf{n},d} = \bigotimes_{\ell=1}^{d} X_{\ell}$$
(12)

where

$$X_{\ell} = \mathbb{R}^{n_{\ell}}, \ \mathbf{n} = (n_1, \dots, n_d).$$
(13)

Scalar (inner) product is defined as

$$\langle \mathbf{A}, \mathbf{B} \rangle := \sum_{\mathbf{i} \in \mathcal{I}} \left[\mathbf{A} \right]_{\mathbf{i}} \left[\mathbf{B} \right]_{\mathbf{i}}, \ \mathbf{A}, \mathbf{B} \in \mathbb{W}_{\mathbf{n}}.$$
 (14)

Induced norm:

$$\|\mathbf{A}\| := \sqrt{\langle \mathbf{A}, \mathbf{A} \rangle} = \sqrt{\sum_{\mathbf{i} \in \mathcal{I}} [\mathbf{A}]_{\mathbf{i}}^2}.$$
 (15)

(Analogy to Frobenius norm)

Hadamard (entrywise) product $\odot:\mathbb{W}_n\times\mathbb{W}_n\to\mathbb{W}_n$ is defined as

$$\left[\mathbf{A} \odot \mathbf{B}\right]_{\mathbf{i}} = \left[\mathbf{A}\right]_{\mathbf{i}} \left[\mathbf{B}\right]_{\mathbf{i}}, \ \mathbf{i} \in \mathcal{I}.$$
(16)

Hadamard (entrywise) product $\odot:\mathbb{W}_n\times\mathbb{W}_n\to\mathbb{W}_n$ is defined as

$$\left[\mathbf{A} \odot \mathbf{B}\right]_{\mathbf{i}} = \left[\mathbf{A}\right]_{\mathbf{i}} \left[\mathbf{B}\right]_{\mathbf{i}}, \ \mathbf{i} \in \mathcal{I}.$$
(16)

For given tensors \mathbf{A} and \mathbf{B} the discrete convolution can be defined entrywise as

$$\left[\mathbf{A} * \mathbf{B}\right]_{\mathbf{j}} = \left[\sum_{\mathbf{k} \in \mathcal{I}} \left[\mathbf{A}\right]_{\mathbf{k}} \left[\mathbf{B}\right]_{\mathbf{j}-\mathbf{k}}\right]_{\mathbf{j}},$$

$$\mathbf{j} \in \underbrace{\{1, 2, \dots, 2n_1 - 1\} \times \dots \times \{1, 2, \dots, 2n_d - 1\}}_{=:\mathcal{J}}.$$
 (17)

Operations are very expensive for large d:

- scalar product: $\mathcal{O}\left(n^{d}\right)$
- Hadamard product: $\mathcal{O}\left(n^{d}\right)$
- discrete convolution: $O(n^{2d})(n^d \log n \text{ if we use the fast FFT algorithm})$

Operations are very expensive for large d:

- scalar product: $\mathcal{O}\left(n^{d}\right)$
- Hadamard product: $\mathcal{O}\left(n^{d}\right)$
- discrete convolution: $O(n^{2d})(n^d \log n \text{ if we use the fast FFT algorithm})$

Storage cost: $\mathcal{O}\left(n^{d}\right)$

Operations are very expensive for large d:

- scalar product: $\mathcal{O}\left(n^{d}\right)$
- Hadamard product: $\mathcal{O}\left(n^{d}\right)$
- discrete convolution: $O(n^{2d})(n^d \log n \text{ if we use the fast FFT algorithm})$

Storage cost: $\mathcal{O}\left(n^{d}\right)$

"The Curse of Dimensionality".

Given a tensor $\mathbf{A} \in \mathbb{R}^{n_1,...,n_{\ell-1},n_\ell,n_{\ell+1},...,n_d}$ and a matrix $\mathbf{B} \in \mathbb{R}^{n_\ell,m}$, we define a contracted product along mode ℓ as

$$\mathbb{R}^{n_1,\dots,n_{\ell-1},m,n_{\ell+1},\dots,n_d} \ni \mathbf{C} = \mathbf{A} \times_{\ell} \mathbf{B}$$
(18)

where each entry of the tensor $\boldsymbol{\mathsf{C}}$ may be written as

$$c_{i_1,\ldots,i_{\ell-1},j_\ell,i_{\ell+1},\ldots,i_d} = \sum_{k=1}^{n_\ell} a_{i_1,\ldots,i_{\ell-1},k,i_{\ell+1},\ldots,i_d} b_{k,j_\ell}, \ j_\ell = 1,\ldots,m.$$
(19)

Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. The vector representation $vec(\mathbf{A}) \in \mathbf{R}^{mn} =$ putting the matrix columns (ordered) into the vector

$$vec(\mathbf{A}) = [a_{11}, \dots, a_{m1}, a_{12}, \dots, a_{m2}, \dots, a_{1n}, \dots, a_{mm}]^T$$
, (20)

or

$$vec(\mathbf{A}) = \begin{bmatrix} [a(:,1)] \\ [a(:,2)] \\ \vdots \\ [a(:,n)] \end{bmatrix}.$$
 (21)

In case of arbitrary tensor $\mathbf{B} \in \mathbb{R}^{n_1 \times ... \times n_d}$ we can define it recursively:

$$vec(\mathbf{B}) = \begin{bmatrix} vec([b(:,...,:,1)]) \\ vec([b(:,...,:,2)]) \\ \vdots \\ vec([b(:,...,:,n)]) \end{bmatrix}.$$
 (22)

"Stacking" of 1-mode fibers of **B**. Index mapping:

$$j = 1 + \sum_{k=1}^{d} (i_k - 1) \prod_{\ell=1}^{k-1} n_{\ell}.$$
 (23)

Tensor reshaping

Matrix unfolding

Matrix unfolding of a given tensor $\mathbf{B} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$ along mode ℓ is a matrix $\mathbf{B}_{(\ell)} \in \mathbb{R}^{n_\ell \times (n_1 \ldots n_{\ell-1} n_{\ell+1} \ldots n_d)}$ which columns are ordered ℓ -mode fibers of \mathbf{B} .

Figure: Matrix unfolding of 3-d tensor A along mode 1

Martin Mrovec

2. Problem setting

To solve discretized Hartree-Fock equations (e.g. using the Direct Inversion of the Iterative Subspace (DIIS) or Inexact Restoration method (IRM)) we have to precompute so-called two-electron integrals:

$$b_{ijkl} = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{g_i(\mathbf{x}) g_j(\mathbf{x}) g_k(\mathbf{y}) g_l(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} d^3 \mathbf{y} d^3 \mathbf{x},$$
(24)

where basis functions $g_*: \mathbb{R}^3 \to \mathbb{R}$ satisfy $|g_*(\mathbf{x})| \to 0$ when $\|\mathbf{x}\| \to \infty$.

To solve discretized Hartree-Fock equations (e.g. using the Direct Inversion of the Iterative Subspace (DIIS) or Inexact Restoration method (IRM)) we have to precompute so-called two-electron integrals:

$$b_{ijkl} = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{g_i\left(\mathbf{x}\right) g_j\left(\mathbf{x}\right) g_k\left(\mathbf{y}\right) g_l\left(\mathbf{y}\right)}{\|\mathbf{x} - \mathbf{y}\|} \, \mathrm{d}^3 \mathbf{y} \, \mathrm{d}^3 \mathbf{x}, \tag{24}$$

where basis functions $g_*: \mathbb{R}^3 \to \mathbb{R}$ satisfy $|g_*(\mathbf{x})| \to 0$ when $\|\mathbf{x}\| \to \infty$.

For gaussian basis functions

$$g(\mathbf{x}) = Np(\mathbf{x})e^{-\alpha \|\mathbf{x}\|^2},$$
(25)

where $p(\mathbf{x}) = p(x_1, x_2, x_3) = x_1^k x_2^l x_3^m$, $k, l, m \in \mathbb{N}_0$, an analytical solution is known.

Generally an analytical solution is not known :-(.

Generally an analytical solution is not known :-(.

Consider a finite box (e.g. a cube) with an equidistant discretization with step size h. So each basis function is approximated by 3-d tensor

$$g_*(\mathbf{x}) \approx \mathbf{G}_* \in \mathbb{R}^{n^{\otimes 3}}.$$
 (26)

If we rewrite the TEI as

$$b_{ijkl} = \int_{\mathbb{R}^3} g_i(\mathbf{x}) g_j(\mathbf{x}) \int_{\mathbb{R}^3} g_k(\mathbf{y}) g_l(\mathbf{y}) \frac{1}{\|\mathbf{x} - \mathbf{y}\|} d^3 \mathbf{y} d^3 \mathbf{x}, \qquad (27)$$

we can understand the inner integral as function of \mathbf{x} .

The discretized problem:

$$b_{ijkl} \approx h^6 \left\langle \mathbf{G}_i \odot \mathbf{G}_j, \mathcal{P}_{\mathcal{N}} * \left(\mathbf{G}_k \odot \mathbf{G}_l \right) \right\rangle, \tag{28}$$

where $\mathcal{P}_{\mathcal{N}} \in \mathbb{R}^{(2n-1)^{\otimes 3}}$ is discretized Newton convolving kernel $\frac{1}{\|\mathbf{y}\|}$. To resolve singularities we have to consider very fine grid - in order of 10^5 - 10^6 in one dimension.

The discretized problem:

$$b_{ijkl} \approx h^6 \left\langle \mathbf{G}_i \odot \mathbf{G}_j, \mathcal{P}_{\mathcal{N}} * \left(\mathbf{G}_k \odot \mathbf{G}_l \right) \right\rangle, \tag{28}$$

where $\mathcal{P}_{\mathcal{N}} \in \mathbb{R}^{(2n-1)^{\otimes 3}}$ is discretized Newton convolving kernel $\frac{1}{\|\mathbf{y}\|}$. To resolve singularities we have to consider very fine grid - in order of 10^5 - 10^6 in one dimension.

Tensor \mathbf{G}_* has 10^{15} entries!!

The discretized problem:

$$b_{ijkl} \approx h^6 \left\langle \mathbf{G}_i \odot \mathbf{G}_j, \mathcal{P}_{\mathcal{N}} * \left(\mathbf{G}_k \odot \mathbf{G}_l \right) \right\rangle, \tag{28}$$

where $\mathcal{P}_{\mathcal{N}} \in \mathbb{R}^{(2n-1)^{\otimes 3}}$ is discretized Newton convolving kernel $\frac{1}{\|\mathbf{y}\|}$. To resolve singularities we have to consider very fine grid - in order of 10^5 - 10^6 in one dimension.

Tensor \mathbf{G}_* has 10^{15} entries!!

Solution - low rank tensor approximations.

3. Tensor formats

メロト メポト メヨト メヨト
Does there exist any decomposition of given tensor that corresponds to matrix $\ensuremath{\mathsf{SVD}}\xspace$

Does there exist any decomposition of given tensor that corresponds to matrix $\ensuremath{\mathsf{SVD}}\xspace$

Not directly.

Does there exist any decomposition of given tensor that corresponds to matrix $\ensuremath{\mathsf{SVD}}\xspace$

Not directly.

• Sum of rank 1 updates, no orthogonality - Canonical format

Does there exist any decomposition of given tensor that corresponds to matrix SVD?

Not directly.

- Sum of rank 1 updates, no orthogonality Canonical format
- Orthonormality, no diagonal core Tucker format

A so-called rank-1 tensor $\bm{V} \in \mathbb{W}_{\bm{n}}$ can be written as a tensor product

$$\mathbf{V} = \mathbf{v}^{(1)} \otimes \ldots \otimes \mathbf{v}^{(d)} = \bigotimes_{\ell=1}^{d} \mathbf{v}^{(\ell)}, \quad \mathbf{v}^{(\ell)} \in \mathbb{R}^{n_{\ell}}.$$
 (29)

A so-called rank-1 tensor $\bm{V} \in \mathbb{W}_{\bm{n}}$ can be written as a tensor product

$$\mathbf{V} = \mathbf{v}^{(1)} \otimes \ldots \otimes \mathbf{v}^{(d)} = \bigotimes_{\ell=1}^{d} \mathbf{v}^{(\ell)}, \ \mathbf{v}^{(\ell)} \in \mathbb{R}^{n_{\ell}}.$$
 (29)

Each tensor $\boldsymbol{\mathsf{A}}\in\mathbb{W}_n$ may be written as

$$\mathbf{A} = \sum_{k=1}^{R} \mathbf{a}_{k}^{(1)} \otimes \ldots \otimes \mathbf{a}_{k}^{(d)}, \quad \mathbf{a}_{k}^{(\ell)} \in \mathbb{R}^{n_{\ell}}.$$
 (30)

A so-called rank-1 tensor $\bm{V} \in \mathbb{W}_{\bm{n}}$ can be written as a tensor product

$$\mathbf{V} = \mathbf{v}^{(1)} \otimes \ldots \otimes \mathbf{v}^{(d)} = \bigotimes_{\ell=1}^{d} \mathbf{v}^{(\ell)}, \quad \mathbf{v}^{(\ell)} \in \mathbb{R}^{n_{\ell}}.$$
 (29)

Each tensor $\boldsymbol{\mathsf{A}}\in\mathbb{W}_n$ may be written as

$$\mathbf{A} = \sum_{k=1}^{R} \mathbf{a}_{k}^{(1)} \otimes \ldots \otimes \mathbf{a}_{k}^{(d)}, \ \mathbf{a}_{k}^{(\ell)} \in \mathbb{R}^{n_{\ell}}.$$
(30)

That is so called Canonical *R*-term representation (we write $\mathbf{A} \in C_R(\mathbb{W}_n)$ or $\mathbf{A} \in C_{R,n}$ which means that rank $(\mathbf{A}) \leq R$). Minimal $R \in \mathbb{N}$ - canonical rank. It satisfies

$$1 \le R \le n^{d-1}. \tag{31}$$

Canonical format $C_{R,n}$

i-th entry of A, we simply evaluate

$$\left[\mathbf{A}\right]_{\mathbf{i}} = \sum_{k=1}^{R} \left[\mathbf{a}_{k}^{(1)}\right]_{i_{1}} \cdot \ldots \cdot \left[\mathbf{a}_{k}^{(d)}\right]_{i_{d}}.$$

Image: Image:

→ < ∃ →</p>

(32)

i-th entry of \mathbf{A} , we simply evaluate

$$\left[\mathbf{A}\right]_{\mathbf{i}} = \sum_{k=1}^{R} \left[\mathbf{a}_{k}^{(1)}\right]_{i_{1}} \cdot \ldots \cdot \left[\mathbf{a}_{k}^{(d)}\right]_{i_{d}}.$$
(32)

Sometimes we require vectors $\mathbf{a}_k^{(\ell)}$ to be normalized. Then we substitute

$$\mathbf{a}_{k}^{(\ell)} = c_{k}^{(\ell)} \mathbf{u}_{k}^{(\ell)}, \ c_{k}^{(\ell)} \in \mathbb{R}, \ \left\| \mathbf{u}_{k}^{(\ell)} \right\| = 1.$$
(33)

So the equivalent normalized canonical representation is written as

$$\mathbf{A} = \sum_{k=1}^{R} c_k \mathbf{u}_k^{(1)} \otimes \ldots \otimes \mathbf{u}_k^{(d)}, \qquad (34)$$

 c_k coefficients are similar to singular values - possible rank reduction.

Canonical format $C_{R,n}$

Figure: Canonical representation of tensor A

29. 3. 2016 26 / 57

Canonical format $C_{R,n}$

pros and cons

- + Storage cost dRn
- + Cheap tensor operations

pros and cons

- + Storage cost dRn
- + Cheap tensor operations
 - No algorithm to get canonical rank (set of "max *R*-rank tensors" not closed)
 - No algorithm to find the best rank-*R* approximation (does not have to exist)

Given the rank parameter $\mathbf{r} = (r_1, \dots, r_d)$ we define the orthogonal Tucker format as

$$\mathbf{A} := \sum_{\mathbf{k}=1}^{\mathbf{r}} b_{k_1,\dots,k_d} \mathbf{v}_{k_1}^{(1)} \otimes \dots \otimes \mathbf{v}_{k_d}^{(d)}$$
(35)

where $\mathbf{k} = (k_1, \dots, k_d)$ and $\forall \ell \in \{1, \dots, d\}$ the set of vectors $\mathbf{v}_{k_\ell}^{(\ell)}, \ 1 \leq k_\ell \leq r_\ell$ is orthonormal. Coefficients b_{k_1,\dots,k_d} form a tensor **B** of order *d*. We write $\mathbf{A} \in \mathcal{T}_{\mathbf{r}}(\mathbb{W}_{\mathbf{n}})$ or $\mathbf{A} \in \mathcal{T}_{\mathbf{r},\mathbf{n}}$.

Given the rank parameter $\mathbf{r} = (r_1, \dots, r_d)$ we define the orthogonal Tucker format as

$$\mathbf{A} := \sum_{\mathbf{k}=1}^{\mathbf{r}} b_{k_1,\dots,k_d} \mathbf{v}_{k_1}^{(1)} \otimes \dots \otimes \mathbf{v}_{k_d}^{(d)}$$
(35)

where $\mathbf{k} = (k_1, \ldots, k_d)$ and $\forall \ell \in \{1, \ldots, d\}$ the set of vectors $\mathbf{v}_{k_\ell}^{(\ell)}, \ 1 \leq k_\ell \leq r_\ell$ is orthonormal. Coefficients b_{k_1, \ldots, k_d} form a tensor **B** of order *d*. We write $\mathbf{A} \in \mathcal{T}_r(\mathbb{W}_n)$ or $\mathbf{A} \in \mathcal{T}_{r,n}$.

Contracted product notation:

$$\mathbf{A} = \mathbf{B} \times_1 \mathbf{V}^{(1)} \times_2 \ldots \times_d \mathbf{V}^{(d)}$$
(36)

Given the rank parameter $\mathbf{r} = (r_1, \dots, r_d)$ we define the orthogonal Tucker format as

$$\mathbf{A} := \sum_{\mathbf{k}=1}^{\mathbf{r}} b_{k_1,\dots,k_d} \mathbf{v}_{k_1}^{(1)} \otimes \dots \otimes \mathbf{v}_{k_d}^{(d)}$$
(35)

where $\mathbf{k} = (k_1, \ldots, k_d)$ and $\forall \ell \in \{1, \ldots, d\}$ the set of vectors $\mathbf{v}_{k_\ell}^{(\ell)}, \ 1 \leq k_\ell \leq r_\ell$ is orthonormal. Coefficients b_{k_1, \ldots, k_d} form a tensor **B** of order *d*. We write $\mathbf{A} \in \mathcal{T}_{\mathbf{r}}(\mathbb{W}_{\mathbf{n}})$ or $\mathbf{A} \in \mathcal{T}_{\mathbf{r}, \mathbf{n}}$.

Contracted product notation:

$$\mathbf{A} = \mathbf{B} \times_1 \mathbf{V}^{(1)} \times_2 \ldots \times_d \mathbf{V}^{(d)}$$
(36)

i-th element of the tensor $A_{(r)}$:

$$\left[\mathbf{A}\right]_{\mathbf{i}} = \sum_{\mathbf{k}=1}^{\mathbf{r}} b_{k_1,\dots,k_d} \left[\mathbf{v}_{k_1}^{(1)}\right]_{i_1} \cdot \dots \cdot \left[\mathbf{v}_{k_d}^{(d)}\right]_{i_d}.$$
 (37)

Tucker format $\mathcal{T}_{\mathbf{r},\mathbf{n}}$

Martin Mrovec

Tensor Numerical Methods

29. 3. 2016 29 / 57

Tucker format $\mathcal{T}_{\mathbf{r},\mathbf{n}}$ Existence of a Tucker decomposition

Theorem

(higher order SVD - HOSVD) Each tensor $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$ can be written as the product

$$\mathbf{A} = \mathbf{S} \times_1 \mathbf{V}^{(1)} \times_2 \ldots \times_d \mathbf{V}^{(d)}, \tag{38}$$

where $\mathbb{R}^{n_{\ell} \times n_{\ell}} \ni \mathbf{V}^{(\ell)} = \left[\mathbf{v}_{1}^{(\ell)}\mathbf{v}_{2}^{(\ell)}\dots\mathbf{v}_{n_{\ell}}^{(\ell)}\right]$ are orthonormal matrices $\left(\left(\mathbf{V}^{(\ell)}\right)^{T}\mathbf{V}^{(\ell)} = I \in \mathbb{R}^{n_{\ell} \times n_{\ell}}\right)$ and the tensor **S** has the same size as **A**. For fixed index ℓ sub-tensors of **S**, $\mathbf{S}_{i_{\ell}=\alpha}$, have the following properties

Frobenius norms $\|\mathbf{S}_{i\ell=j}\|$ are equal to the singular values $\sigma_j^{(e)}$ of the matrix unfolding $\mathbf{A}_{(\ell)}$ (ℓ -mode singular values). Vectors $\mathbf{v}_j^{(\ell)}$ are corresponding left singular vectors of $\mathbf{A}_{(\ell)}$.

Algorithm

(HOSVD)

- Given a tensor **A**, for each $\ell = 1, ..., d$ construct the matrix unfolding $\mathbf{A}_{(\ell)}$.
- **2** For each unfolding find an SVD decomposition, i.e. $\mathbf{A}_{(\ell)} = \mathbf{V}^{(\ell)} \Sigma^{(\ell)} \left(\mathbf{W}^{(\ell)} \right)^T$. Store the matrices $\mathbf{V}^{(\ell)}$.
- Compute the core tensor as $\mathbf{S} = \mathbf{A} \times_1 \left(\mathbf{V}^{(1)} \right)^T \times_2 \ldots \times_d \left(\mathbf{V}^{(d)} \right)^T$.

Theorem

(Truncated HOSVD)

Let the HOSVD of the tensor **A** is given and let the rank of matrix unfolding $\mathbf{A}_{(\ell)}$ be equal to R_{ℓ} for $\ell = 1, ..., d$. Let's denote by $\tilde{\mathbf{A}}$ the tensor which is obtained from **A** by discarding the smallest ℓ -mode singular values $\sigma_{r_{\ell}+1}^{(\ell)}, \sigma_{r_{\ell}+2}^{(\ell)}, ..., \sigma_{R_{\ell}}^{(\ell)}$ for given values of r_{ℓ} ($\ell = 1, ..., d$). Then the error of the approximation satisfies

$$\left\|\mathbf{A} - \tilde{\mathbf{A}}\right\|^2 \le \sum_{\ell=1}^d \sum_{i_\ell=r_\ell+1}^{R_\ell} \left(\sigma_{i_\ell}^{(\ell)}\right)^2.$$
(39)

Figure: Mechanism of truncated HOSVD

29. 3. 2016 33 / 57

- + Storage cost $r^d + drn$
- + Cheap tensor operations (more expensive than in case of can. format)
- $+\,$ Quite robust algorithms to find the best rank-r approximation
- + Efficient especially for 3D tensors

- + Storage cost $r^d + drn$
- + Cheap tensor operations (more expensive than in case of can. format)
- $+\,$ Quite robust algorithms to find the best rank-r approximation
- + Efficient especially for 3D tensors
- Expensive for larger d

Definition

Given rank parameters R, \mathbf{r} we denote by $\mathcal{T}_{\mathcal{C}_{R,\mathbf{r}}}$ a subclass of tensors written in Tucker format $\mathcal{T}_{\mathbf{r},\mathbf{n}}$ whose core tensor **B** is represented in the canonical format.

Definition

Given rank parameters R, \mathbf{r} we denote by $\mathcal{T}_{\mathcal{C}_{R,\mathbf{r}}}$ a subclass of tensors written in Tucker format $\mathcal{T}_{\mathbf{r},\mathbf{n}}$ whose core tensor **B** is represented in the canonical format.

A tensor in two-level format can be written as

$$\mathbf{A} = \left(\sum_{k=1}^{R} \xi_k \mathbf{u}_k^{(1)} \otimes \ldots \otimes \mathbf{u}_k^{(d)}\right) \times_1 \mathbf{V}^{(1)} \times_2 \ldots \times_d \mathbf{V}^{(d)}.$$
(40)

Definition

Given rank parameters R, \mathbf{r} we denote by $\mathcal{T}_{\mathcal{C}_{R,\mathbf{r}}}$ a subclass of tensors written in Tucker format $\mathcal{T}_{\mathbf{r},\mathbf{n}}$ whose core tensor **B** is represented in the canonical format.

A tensor in two-level format can be written as

$$\mathbf{A} = \left(\sum_{k=1}^{R} \xi_k \mathbf{u}_k^{(1)} \otimes \ldots \otimes \mathbf{u}_k^{(d)}\right) \times_1 \mathbf{V}^{(1)} \times_2 \ldots \times_d \mathbf{V}^{(d)}.$$
(40)

• storage cost dRr + drn

Figure: 3-d tensor A in two-level Tucker-canonical format

Multilinear algebra operations Canonical format

 $\bm{A}, \bm{B} \in \mathcal{C}_{\textit{R}, \bm{n}}$

$$\mathbf{A} = \sum_{k=1}^{R_A} c_k \mathbf{u}_k^{(1)} \otimes \ldots \otimes \mathbf{u}_k^{(d)}, \ \mathbf{B} = \sum_{j=1}^{R_B} d_j \mathbf{v}_j^{(1)} \otimes \ldots \otimes \mathbf{v}_j^{(d)}.$$
(41)

Image: A match a ma

Multilinear algebra operations Canonical format

 $\bm{A}, \bm{B} \in \mathcal{C}_{\textit{R}, \bm{n}}$

$$\mathbf{A} = \sum_{k=1}^{R_A} c_k \mathbf{u}_k^{(1)} \otimes \ldots \otimes \mathbf{u}_k^{(d)}, \ \mathbf{B} = \sum_{j=1}^{R_B} d_j \mathbf{v}_j^{(1)} \otimes \ldots \otimes \mathbf{v}_j^{(d)}.$$
(41)

• scalar product:

$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{k=1}^{R_A} \sum_{j=1}^{R_B} c_k d_j \prod_{\ell=1}^d \left\langle \mathbf{u}_k^{(\ell)}, \mathbf{v}_j^{(\ell)} \right\rangle$$
(42)

 $(dR_A R_B n \text{ operations})$

Multilinear algebra operations Canonical format

 $\bm{A}, \bm{B} \in \mathcal{C}_{\textit{R}, \bm{n}}$

$$\mathbf{A} = \sum_{k=1}^{R_A} c_k \mathbf{u}_k^{(1)} \otimes \ldots \otimes \mathbf{u}_k^{(d)}, \ \mathbf{B} = \sum_{j=1}^{R_B} d_j \mathbf{v}_j^{(1)} \otimes \ldots \otimes \mathbf{v}_j^{(d)}.$$
(41)

scalar product:

$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{k=1}^{R_A} \sum_{j=1}^{R_B} c_k d_j \prod_{\ell=1}^d \left\langle \mathbf{u}_k^{(\ell)}, \mathbf{v}_j^{(\ell)} \right\rangle$$
(42)

 $(dR_A R_B n \text{ operations})$

• Hadamard product:

$$\mathbf{A} \odot \mathbf{B} = \sum_{k=1}^{R_A} \sum_{j=1}^{R_B} c_k d_j \bigotimes_{\ell=1}^d \left(\mathbf{u}_k^{(\ell)} \odot \mathbf{v}_j^{(\ell)} \right)$$
(43)

 $(dR_A R_B n \text{ operations})$

discrete convolution:

$$\mathbf{A} * \mathbf{B} = \sum_{k=1}^{R_A} \sum_{j=1}^{R_B} c_k d_j \bigotimes_{\ell=1}^d \left(\mathbf{u}_k^{(\ell)} * \mathbf{v}_j^{(\ell)}
ight)$$

 $(dR_A R_B n \log n \text{ operations using 1D FFT})$

(44)

Multilinear algebra operations

Tucker format

$$\mathbf{A}, \mathbf{B} \in \mathcal{T}_{\mathbf{r},\mathbf{n}}$$
:

$$\mathbf{A} = \mathbf{C} \times_1 \mathbf{U}^{(1)} \times_2 \ldots \times_d \mathbf{U}^{(d)}, \ \mathbf{B} = \mathbf{D} \times_1 \mathbf{V}^{(1)} \times_2 \ldots \times_d \mathbf{V}^{(d)}.$$
(45)

Martin Mrovec

Multilinear algebra operations

$$\mathbf{A}, \mathbf{B} \in \mathcal{T}_{\mathbf{r},\mathbf{n}}:$$
$$\mathbf{A} = \mathbf{C} \times_1 \mathbf{U}^{(1)} \times_2 \ldots \times_d \mathbf{U}^{(d)}, \ \mathbf{B} = \mathbf{D} \times_1 \mathbf{V}^{(1)} \times_2 \ldots \times_d \mathbf{V}^{(d)}.$$
(45)

• scalar product:

$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{\mathbf{k}=1}^{\mathbf{r}_{A}} \sum_{j=1}^{\mathbf{r}_{B}} c_{k_{1}...k_{d}} d_{j_{1}...j_{d}} \prod_{\ell=1}^{d} \left\langle \mathbf{u}_{k_{\ell}}^{(\ell)}, \mathbf{v}_{j_{\ell}}^{(\ell)} \right\rangle.$$
(46)
($\mathcal{O}\left(dr^{2}n + r^{2d}\right)$ operations)

Multilinear algebra operations

$$\mathbf{A}, \mathbf{B} \in \mathcal{T}_{\mathbf{r},\mathbf{n}}:$$
$$\mathbf{A} = \mathbf{C} \times_1 \mathbf{U}^{(1)} \times_2 \ldots \times_d \mathbf{U}^{(d)}, \ \mathbf{B} = \mathbf{D} \times_1 \mathbf{V}^{(1)} \times_2 \ldots \times_d \mathbf{V}^{(d)}.$$
(45)

• scalar product:

$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{\mathbf{k}=1}^{\mathbf{r}_{A}} \sum_{j=1}^{\mathbf{r}_{B}} c_{k_{1}...k_{d}} d_{j_{1}...j_{d}} \prod_{\ell=1}^{d} \left\langle \mathbf{u}_{k_{\ell}}^{(\ell)}, \mathbf{v}_{j_{\ell}}^{(\ell)} \right\rangle.$$
(46)
($\mathcal{O}\left(dr^{2}n + r^{2d}\right)$ operations)

• Hadamard product:

$$\mathbf{A} \odot \mathbf{B} = \sum_{\mathbf{k}=1}^{\mathbf{r}_{A}} \sum_{\mathbf{j}=1}^{\mathbf{r}_{B}} c_{k_{1}...k_{d}} d_{j_{1}...j_{d}} \bigotimes_{\ell=1}^{d} \left(\mathbf{u}_{k_{\ell}}^{(\ell)} \odot \mathbf{v}_{j_{\ell}}^{(\ell)} \right).$$
(47)

$$\left(\mathcal{O}\left(dr^2n+r^{2d}\right) \text{ operations}\right)$$

• discrete convolution:

$$\mathbf{A} * \mathbf{B} = \sum_{k=1}^{\mathbf{r}_{A}} \sum_{j=1}^{\mathbf{r}_{B}} c_{k_{1}...k_{d}} d_{j_{1}...j_{d}} \bigotimes_{\ell=1}^{d} \left(\mathbf{u}_{k_{\ell}}^{(\ell)} * \mathbf{v}_{j_{\ell}}^{(\ell)} \right).$$
(48)
$$\left(\mathcal{O} \left(dr^{2}n \log n + r^{2d} \right) \text{ operations using 1D FFT} \right)$$

Tensor format	Scalar product	Hadamard product	Discrete convolution
Full	n ^d	n ^d	n ^d log n
Canonical	$dR_A R_B n$	$dR_A R_B n$	$dR_A R_B n \log n$
Tucker	$\mathcal{O}\left(dr^2n+r^{2d}\right)$	$\mathcal{O}\left(dr^2n+r^{2d}\right)$	$\mathcal{O}\left(dr^2n\log n+r^{2d}\right)$

Table: Computational complexities of various tensor formats

4. Low rank approximation of function related tensors
How to find an rank-structured approximation of tensor $\mathbf{G} \in \mathbb{R}^{n^{\otimes d}}$ discretizing a multivariate function $g : \mathbb{R}^d \to \mathbb{R}$ on a fine grid? How to find an rank-structured approximation of tensor $\mathbf{G} \in \mathbb{R}^{n^{\otimes d}}$ discretizing a multivariate function $g : \mathbb{R}^d \to \mathbb{R}$ on a fine grid?

- Tucker format
- Canonical format

Consider a set $\{\xi_j\}_{j=1}^{N}$ of interpolation points, where $\mathbf{N} = (N_1, \dots, N_d)$ represents a number of interpolation points at each dimension. The interpolant of the function g:

$$\mathcal{I}_{\mathsf{N}}g\left(\mathsf{x}\right) = \sum_{j=1}^{\mathsf{N}} g\left(\xi_{j}\right) I_{j}\left(\mathsf{x}\right), \ I_{j}: \mathbb{R}^{d} \to \mathbb{R}$$

$$(49)$$

such as

$$l_{j}(\xi_{j}) = 1, \ l_{j}(\xi_{i}) = 0 \ i \neq j.$$
 (50)

Approximation of function related tensors Tucker format

Given orthonormal sets of interpolation functions

$$I_{\mathbf{j}} = \iota_{j_1}^{(1)} \otimes \ldots \otimes \iota_{j_d}^{(d)}, \tag{51}$$

we can write a Tucker approximation

$$g(\mathbf{x}) \approx \mathbf{G} = \Xi \times_1 \mathbf{I}^{(1)} \times_2 \ldots \times_d \mathbf{I}^{(d)} \in \mathcal{T}_{\mathbf{N},\mathbf{n}},\tag{52}$$

where

$$\left[\Xi\right]_{\mathbf{j}} = g\left(\xi_{\mathbf{j}}\right) \tag{53}$$

and columns of side matrices $\mathbf{I}^{(\ell)} \in \mathbb{R}^{n_\ell \times N_\ell}$ are discretized functions $\iota_{j_\ell}^{(\ell)}, \ j_\ell = 1, \dots, N_\ell$.

Approximation of function related tensors Tucker format

Given orthonormal sets of interpolation functions

$$I_{\mathbf{j}} = \iota_{j_1}^{(1)} \otimes \ldots \otimes \iota_{j_d}^{(d)}, \tag{51}$$

we can write a Tucker approximation

$$g(\mathbf{x}) \approx \mathbf{G} = \Xi \times_1 \mathbf{I}^{(1)} \times_2 \ldots \times_d \mathbf{I}^{(d)} \in \mathcal{T}_{\mathbf{N},\mathbf{n}},\tag{52}$$

where

$$\left[\Xi\right]_{\mathbf{j}} = g\left(\xi_{\mathbf{j}}\right) \tag{53}$$

and columns of side matrices $\mathbf{I}^{(\ell)} \in \mathbb{R}^{n_{\ell} \times N_{\ell}}$ are discretized functions $\iota_{j_{\ell}}^{(\ell)}, \ j_{\ell} = 1, \ldots, N_{\ell}.$

How to choose an orthonormal set of interpolating functions?

Martin Mrovec

Approximation of function related tensors Sinc function

The sinc function is defined as

$$\operatorname{sinc}(x) = \begin{cases} \frac{\sin(\pi x)}{\pi x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$

(54)

Approximation of function related tensors Sinc function

The sinc function is defined as

$$\operatorname{sinc}(x) = \begin{cases} \frac{\sin(\pi x)}{\pi x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$
(54)

Functions representing band-limited signals can be exactly reconstructed by their sampling values. So if the support of Fourier transform of given function, \hat{g} , is subset of $\left[-\frac{\pi}{h}, \frac{\pi}{h}\right]$ ($g \in U_h$), then

$$g(x) = \sum_{n=-\infty}^{\infty} g(nh) S_{n,h}(x), \qquad (55)$$

where

$$S_{n,h}(x) = \operatorname{sinc}\left(\frac{x-nh}{h}\right).$$
 (56)

Approximation of function related tensors Sinc function

The sinc function is defined as

$$\operatorname{sinc}(x) = \begin{cases} \frac{\sin(\pi x)}{\pi x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$
(54)

Functions representing band-limited signals can be exactly reconstructed by their sampling values. So if the support of Fourier transform of given function, \hat{g} , is subset of $\left[-\frac{\pi}{h}, \frac{\pi}{h}\right]$ ($g \in U_h$), then

$$g(x) = \sum_{n=-\infty}^{\infty} g(nh) S_{n,h}(x), \qquad (55)$$

where

$$S_{n,h}(x) = \operatorname{sinc}\left(\frac{x-nh}{h}\right).$$
 (56)

A set of functions $\{S_{n,h}(x)\}_{n\in\mathbb{Z}}$ forms an orthonormal basis of U_h .

Functions that depend on the sum of single variables, respectively their squares, i.e.

$$g(\mathbf{x}) = g(\rho), \ \rho = \sum_{i=1}^{d} x_i, \ \text{resp. } \rho = \sum_{i=1}^{d} x_i^2.$$
 (57)

Functions that depend on the sum of single variables, respectively their squares, i.e.

$$g(\mathbf{x}) = g(\rho), \ \rho = \sum_{i=1}^{d} x_i, \ \text{resp. } \rho = \sum_{i=1}^{d} x_i^2.$$
 (57)

Assume that a function $g(\rho)$ is given by transformation

$$g(\rho) = \int_{\Omega} G(t) e^{\rho F(t)} dt, \ \Omega \in \{\mathbb{R}, \mathbb{R}_+, [a, b]\}.$$
(58)

Functions that depend on the sum of single variables, respectively their squares, i.e.

$$g(\mathbf{x}) = g(\rho), \ \rho = \sum_{i=1}^{d} x_i, \ \text{resp. } \rho = \sum_{i=1}^{d} x_i^2.$$
 (57)

Assume that a function $g(\rho)$ is given by transformation

$$g(\rho) = \int_{\Omega} G(t) e^{\rho F(t)} dt, \ \Omega \in \{\mathbb{R}, \mathbb{R}_+, [a, b]\}.$$
(58)

Suitable quadrature

$$g(\rho) \approx \sum_{j=1}^{R} \omega_j G(t_j) e^{\rho F(t_j)}$$
(59)

where ω_j are quadrature heights, t_j are quadrature points.

Martin Mrovec

If $\rho = \sum_{i=1}^{d} x_i$ we can write

$$g(\mathbf{x}) \approx \sum_{j=1}^{R} \omega_j G(t_j) \prod_{i=1}^{d} e^{x_i F(t_j)}.$$
 (60)

If $\rho = \sum_{i=1}^{d} x_i$ we can write

$$g(\mathbf{x}) \approx \sum_{j=1}^{R} \omega_j G(t_j) \prod_{i=1}^{d} e^{x_i F(t_j)}.$$
 (60)

Fully separable representation!

.

If $\rho = \sum_{i=1}^{d} x_i$ we can write

$$g(\mathbf{x}) \approx \sum_{j=1}^{R} \omega_j G(t_j) \prod_{i=1}^{d} e^{x_i F(t_j)}.$$
 (60)

Fully separable representation!

$$g(\mathbf{x}) \approx \sum_{j=1}^{R} c_j \mu_j^{(1)} \otimes \ldots \otimes \mu_j^{(d)}.$$
 (61)

Sinc quadrature (rectangular rule):

$$\int_{\mathbb{R}} G(t) e^{\rho F(t)} dt \approx \int_{\mathbb{R}} \sum_{n=-M}^{M} S_{n,h}(t) G(nh) e^{\rho F(nh)} dt = \sum_{n=-M}^{M} G(nh) e^{\rho F(nh)} dt$$
(62)

Canonical approximation of newton kernel

$$f(\mathbf{x}) = rac{1}{\|\mathbf{x}\|} = rac{1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}.$$

(63)

Canonical approximation of newton kernel

$$f(\mathbf{x}) = \frac{1}{\|\mathbf{x}\|} = \frac{1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}.$$
 (63)

Now consider a function $g(\rho) = \frac{1}{\rho}$. It can be represented using an integral transformation

$$\frac{1}{\rho} = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-\rho^2 t^2} \, \mathrm{d}t.$$
 (64)

Canonical approximation of newton kernel

$$f(\mathbf{x}) = \frac{1}{\|\mathbf{x}\|} = \frac{1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}.$$
 (63)

Now consider a function $g(\rho) = \frac{1}{\rho}$. It can be represented using an integral transformation

$$\frac{1}{\rho} = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-\rho^2 t^2} \, \mathrm{d}t.$$
 (64)

For the Newton kernel we can write

$$\frac{1}{\|\mathbf{x}\|} = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-t^2 \sum_{i=1}^3 x_i^2} \, \mathrm{d}t.$$
 (65)

Canonical approximation of newton kernel

$$f(\mathbf{x}) = \frac{1}{\|\mathbf{x}\|} = \frac{1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}.$$
 (63)

Now consider a function $g(\rho) = \frac{1}{\rho}$. It can be represented using an integral transformation

$$\frac{1}{\rho} = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-\rho^2 t^2} \, \mathrm{d}t.$$
 (64)

For the Newton kernel we can write

$$\frac{1}{\|\mathbf{x}\|} = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-t^2 \sum_{i=1}^3 x_i^2} \, \mathrm{d}t.$$
 (65)

After substitution:

$$\frac{1}{\rho} = \frac{2}{\sqrt{\pi}} \int_{\mathbb{R}} \cosh w \frac{e^{-\rho^2 \log^2(1+e^{sinhw})}}{1+e^{-sinhw}} \, \mathrm{d}w. \tag{66}$$

Martin Mrovec

29. 3. 2016 49 / 57

Canonical approximation of newton kernel

Figure: 2D newton potential discretized on square $[-2, 2] \times [-2, 2]$

Martin Mrovec

Tensor Numerical Methods

29. 3. 2016 50 / 57

Canonical approximation of newton kernel

Figure: rank-3 approximation error

Martin Mrovec

Canonical approximation of newton kernel

Figure: rank-5 approximation error

Martin Mrovec

Tensor Numerical Methods

29. 3. 2016 52 / 57

Canonical approximation of newton kernel

Figure: rank-11 approximation error

Martin Mrovec

Tensor Numerical Methods

29. 3. 2016 53 / 57

Canonical approximation of newton kernel

Figure: rank-15 approximation error

Martin Mrovec

29. 3. 2016 54 / 57

Other applications

Martin Mrovec

Image: A mathematical states and a mathem

• tensor representation of multidimensional operators

- tensor representation of multidimensional operators
- superfast FFT

- tensor representation of multidimensional operators
- superfast FFT
- multi-parametric/stochastic PDEs

- tensor representation of multidimensional operators
- superfast FFT
- multi-parametric/stochastic PDEs
- integrating of highly oscillating functions

Thank you for attention!

- Boris Khoromskij homepage: http://personal-homepages.mis.mpg.de/bokh/
- KHOROMSKIJ, Boris N. Introduction to Tensor Numerical Methods in Scientific Computing [online]. Zuerich, 2011 [cit. 2016-03-09]. Available at:

http://www.math.uzh.ch/fileadmin/math/preprints/06_11.pdf

 KHOROMSKIJ, Boris N. Tensor Numerical Methods for High-dimensional PDEs: Basic Theory and Initial Applications [online]. Leipzig, 2014 [cit. 2016-03-09]. Available at: http://arxiv.org/pdf/1408.4053v1.pdf