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Introduction

Motivation

= modelling of wave (acoustic/electromagnetic) propagation has
numerous engineering applications

nondestructive testing
seismology

radar

ultrasonic imaging
tomography

m BEM especially suitable for modelling of wave propagation in an
unbounded domain
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Introduction

Wave equation

Scattering problem

L2 (1) — Aut(z, t) 0 inf2 xR,
u*®(z,0) = 0 in £2,
W (2,00 = 0 in (2,
Bus¢(z,t) —Bu™(z,t)  onl xR,

0 use
m boundary conditions N VJ

m sound-soft scatterer: Bu = u s

m sound-hard scatterer: Bu = gz ~
: . ou ou r
m absorbing scatterer: Bu = g — a%y ydumc
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Introduction

Wave equation

BEM approaches to wave equation

m Space-time integral equations
m use the fundamental solution of the wave equation
m global in time
m large system matrix
m special integration method needed

m Laplace transform method

m solve frequency domain problems and use inverse Laplace/Fourier
transform for transform to time domain

m Time-stepping methods

m use implicit scheme for time-discretization and BEM for the solution
of resulting elliptic problems in each time step
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BEM for wave equation

Fundamental solutions

Lemma

The fundamental solution of the wave equation is given by

G(t,z,y) = FH(t—|r—y|) in1D,
Gt,z,y) = %% in 2D,
G(t,z,y) = ﬁ% in 3D.
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BEM for wave equation

Representation theorem

Representation formula in 3D

ut,®) = fy [r oy Gt — s,z —y)luls,y)] — Gt — s,z — y)[Zuly)ld,ds

= s Jr 5 (ot — s — 2 = 9D)) [u(s, v)

3(t = s — |z = yDlgruy)ldlyds

1
Trlo—gl

t
= fo fl" Bnl?y) 47r|21.—y‘ 6(t — 5= |x - y|)[u(s, y)]

O|lx—
— e B 2 5t — s — o — y)[uls, y)]

3(t = s = |o — yDlFruy)ldlyds

_ 1
ar|z—y]

— 9 1 1 dlz—y|r 8
= Jr gy me= 00 — 12 — Y1, 9)] — Ty Tater Lag et — 2 — )]

_47r|:3:.—y‘ [%u(t — |z —yl,y)ldly
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BEM for wave equation

Boundary layer potentials

Representation formula in 3D

= Jr oy =g [t — |2 — 1,9)] — =gy S B u(t — [z — yld Ty

gt — o — yl,9)]dTy = D((u]) — §(18nu)), =€ 2

u(t, )

Let (t,7) € Ry x R3\ I'. For p,p: Ry x I' = R we define
m single layer potential
= (S(pD)(t.2) = [ =y p(t = & — yl,p)ldTy
m double layer potential

= (D([p))(t,z) =

9 1 1 O|z—y| _
Jr W(y) Tt — |z =yl )] = m= g et — e —yD)d Iy =
n(y)(z—y) (et—|z— yI y) Pt=lz—yl,y)
= Jr ( el T Tyl )dF
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BEM for wave equation

Retarded potential operators

For x € {27, resp. x € {2 going to I

Traces of the potential operators

lm (SE)(t2) = lm (SE)(t2) = Va(t,2)

Sz

Michal Merta (1T4l) BEM for Wave Equation 9 /26



BEM for wave equation

Retarded potential operators

For x € {27, resp. x € {2 going to I

Traces of the potential operators

lm (SE)(t2) = lm (SE)(t2) = Va(t,2)

Sz
i 2S@)
2=3zx—>TI" on

(t,z) = (I/2 + K)p(t, z)
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BEM for wave equation

Retarded potential operators

For x € {27, resp. x € {2 going to I

Traces of the potential operators

lim  (SE)(t2) = Jim (SE)(t,2) = Va(t,2)

2= 3z—T
im0y (124 K)ptt,0)
ED)

235z—1I" T(t7 .’17) = (_I/2 -+ K)p(t7 117)
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BEM for wave equation

Retarded potential operators

For x € {27, resp. x € {2 going to I

Traces of the potential operators

lm (SE)(t2) = lm (SE)(t2) = Va(t,2)

im0y (124 K)ptt,0)
2(5(p))

SAm (D)t 2) = (=1/2+ K)p(t,2)
Sx—I
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BEM for wave equation

Retarded potential operators

For x € {27, resp. x € {2 going to I

Traces of the potential operators

lim  (SE)(t2) = Jim (SE)(t,2) = Va(t,2)

2= >z—T
i OS®)
2=3zx—>TI" on

(t,z) = (I/2 + K)p(t, z)

Jim O8O 0y = 172+ K)p(t,0)

SAm (D)t 2) = (=1/2+ K)p(t,2)
Sx—I

im (D)) = (1/2+ K)e(t,2)
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BEM for wave equation

Retarded potential operators

For x € {27, resp. x € {2 going to I

Traces of the potential operators

lim  (SE)(t2) = Jim (SE)(t,2) = Va(t,2)

2= >z—T
i OS®)
2=3zx—>TI" on

(t,z) = (I/2 + K)p(t, z)

Jim O8O 0y = 172+ K)p(t,0)

SAm (D)t 2) = (=1/2+ K)p(t,2)
Sx—I

im (D)) = (1/2+ K)e(t,2)

Jaim IO gy~ O 0y — Wit o)

Michal Merta (1T4l) BEM for Wave Equation 9 /26



BEM for wave equation

Retarded potential operators

Retarded potential operators

Vp(t,z) := iﬂ p(r,y) dry

P|73—y|
_ 1 [ n@)(z—y) (pr,y) | By
K”“’“”)'Wm/p e — 9] <|x—y|2+|x—y|>d“f

K'o(t, ) ::i/Fn(y)(w—y)( p(ry) (T’y)>dry

Am lz =yl \le—yl* [z -yl
We(t,z) = lim n(z)V. <_%/Fn(y)v p(t || —yl, y))

—a -yl

Ti=t— |z —1y

m time domain single layer operator
m time domain double layer operator
m time domain adjoint double layer operator

m time domain hypersingular boundary integral operator
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BEM for wave equation

Retarded potential boundary integral equations

Direct formulation

Let u(t,z) =0 in £27. Then
u(t,x) = D(u|r) — S(Opulr) in Ry x 2.

Y0 ult, z) = %" (D(ulr) — 8(9nulr))
ulr = (I/2+ K')(ulr) = V(9pur)
(K" =1/2)(ulr) = V(Onur)

Y1 u(t, z) = 1" (D(ulr) — S(8pulr))
Onulr = W(ulr) = (=1/2 + K)(Onulr)
(K +1/2)(0nulr) = W(u|r)
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BEM for wave equation

Retarded potential boundary integral equations

Indirect formulation
u(t,x) = (S(p))(t,x) in Ry x 2.

ex

76 u(t, ) = 76" (S(p))(t, )
ulr =V (p)

ET

¥ u(t, z) =177 (S(p)) (¢, )
Onulr = (=1/2+ K)(p)
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BEM for wave equation

Retarded potential boundary integral equations

Indirect formulation
u(t,z) = (D(p))(t,z) in Ry x 0.

ex

Yo ult, z) =5 (D(p))(t, z)
ulr = (I/2+ K')(¢)

Fiu(t, ) = 1" (D(p))(¢, @)
Onulr = W(p)
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Mathematical analysis of RPBIE

= usually done via Laplace transform to frequency domain

(Cf)w) = f = / ety di

elwlz—yl .
(Vo)) = g [ i) T, = Vo)

meg

u RPBIE 5 BIE (Helmholtz equation) ©> RPBIE
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BEM for wave equation

Variational formulation

Space-time variational formulation for soft scattering

= indirect formulation using single layer potential for Dirichlet problem

V(¢) = ulr

ot — |z —yl,y)
r 4|z — y|

Weak formulation

Find ¢ € H=Y/27Y2((0,T) x I') := L*(0, T, H~*/*(I")) + H~/3(0, T, L*(I")) such

that
T ] _ _ T
/0 /F/F¢(t |Zﬂ|xyl’3?§(t’m) dFydI‘zdt=/0 /Fg(x,t)g(x,t)drzdt

holds for all &.

ary = g(t,w)
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Numerical realization

Space-time Galerkin discretization

N M i
¢Galerkin = Z Zaggoj(x)bi(t)a (3;7 t) er

=1 =1

m {b;}X ... basis functions in time (with compact supports)

] {wj}jﬂ/il ... basis functions in space (with compact supports)
J

s

m o ... unknown coefficients
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Numerical realization

Space-time Galerkin discretization

Galerkin discretization

Find af,i:l,...,N,j:l,...,M such that

ol (y)bi(t — |z — y))pu()be (¢)
[ 55 bt i

=1 j=1

_ /0 /F (@, ) (@)be(H)dTs dt

fork=1,...,N,l=1,..., M.

bin(r) = /OTW—MM(R

r

Abk o / / o3 (0o (@) k(1 — y]) AT, I,

/ / Yo () k(| — y|) ALy Al
supp(¢q) supp(%

Michal Merta (1T4l) BEM for Wave Equation 17 / 26



Numerical realization

Space-time Galerkin discretization

Galerkin discretization

Find a{,i:l,...,N,j:l,...,M such that

ZZA”,'“ 1= / ' / (@, )i (@)br (t)d T dt
0 r

=1 j=1
::g{"
fork=1,...,.N,l=1,....,.M
b b, - by
by
b,
by
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Numerical realization

Temporal basis functions

Integration problem

How to efficiently evaluate Ai.’llc?

m Y (r) = T ba(t=r)bi(t) 4T)b’“( ) dt is
non-zero onIy for r = |x — y| such
that

supp(b; (t — ) N supp(b;(t)) # 0
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Numerical realization

Temporal basis functions

m construction of infinitely smooth temporal basis functions using
partition of unity method (PUM), [Sauter, Veit]

Let us start with the C*° function

erf(2arctanh(t)), for |t| < 1,
fi) =< —1,fort < -1,
1,fort > 1.
Then
1 t—a 1
ha’b(t) = if (2b— a - 1) + 5,
and

| hap(t,),fort <b,
Pabe(t) = { 1 — hyo(t),for t > b.
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Numerical realization

Temporal basis functions

Partition of unity functions

Let ©=(0,T) and 0 =to < t1 <t2 < ...<tn—2 <tn-1=T,7;:= (ti—1,t:). Let
©01:=71,01 :=71,0; =71 UT;,i=2,...N —2,0n := 7nv_1. Then a smooth
partition of unity subordinate to the cover {©;} is defined as

p1(t) =1 = hug,e, (1),
‘Pi(t) = Ptioitio1,t; (t)v fori=2,...,N —1,
‘PN(t) =hiy oty (t)

Temporal basis functions

The temporal basis functions are defined as

bi(t) = g1 ()22,
bi(t) := pi(t), fori=2,...,N—1,

bn (t) := on(t).
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Numerical realization

Implementation remarks

Algorithm 1 System matrix assembly
Require: A triangulation {r; : 1 < i < M} of I', number of time-steps N, time
derivative g of RHS

1: for k=1to N do .
2 g (I [ 0@@ht) drdr) © e RM
3: fori=1to N do -

4: if minsupp b; > maxsupp by then

5: Akt 0 e RMXM

6: else

7 for j,l =1to M do

& Ab e [T [ freien(a)(r) AT, dT
9: end for

10: end if

11: end for

12: end for
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Numerical re: n

Matrix structure

400

0 100 200 300 400
nz = 50020
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Solving the system

What kind of solver should we use?

m iterative (GMRES, BiCGStab)

m would be ideal because of low memory requirements
m missing suitable preconditioners

m direct (PARDISO, SuperLU, MUMPS)

m high memory requirements
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Conclusion

Current work

optimizing and parallelizing \\\
system matrix assembly

gy

1 2 4 8 16

m tests of direct solvers e of o trads
m MUMPS - 5120 elements, 25

time steps - approx. 15 min.  Figure : Assemly of hypersingular
on ANSELM operator matrix

MPI parallelization necessary

matrix approximation?

preconditioners?
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Conclusion

Bamberger, A., Ha Duong, T. Formulation varationnelle espace-temps
pour le calcul par potentiel retardé d'une onde acoustique. Math.
Meth. Apl. Sci., 8, 1986.

Ha Duong, T. On Retarded Potential Boundary Integral Equations
and their Discretisations. LNCSE, 31, 2003.

Costabel, M. Time-Dependent Problems with the Boundary Integral
Equation Method. Encyclopedia of Computational Mechanics, 2004.

Sauter, S., Veit, A. A Galerkin Method for Retarded Boundary
Integral Equations with Smooth and Compactly Supported Temporal
Basis Functions. Numer. Math., 2012.

Thank you for your attention!
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