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What is a number?
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Number construction
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Algebraic number

An algebraic number field is a finite extension of Q; an algebraic
number is an element of an algebraic number field.

Ring of integers. Let K be an algebraic number field. Because K is of
finite degree over Q, every element a of K is a root of monic
polynomial

fx)=x"+ ax™" 1+ ..+ a;, aq€Q

If ais root of polynomial with integer coefficient, then a is called an
algebraic integer of K.



Algebraic number

Consider more generally an integral domain A. An element a € A is said
to be a unit if it has an inverse in A; we write A™ for the multiplicative
group of units in A.

An element p of an integral domain A is said to be irreducible if it

IS neither zero nor a unit, and can’t be written as a product of two
nonunits.

An element p of 4 is said to prime if it is neither zero nor a unit, and if
plab = pla or p|b.



Algebraic number

Example:

In Z[\/TS] we have
6=23=(1+v-5).(1-/-5)

Toseethat2,3,1 ++/—5,1 —+—=5 areirreducible, and no two are
associates, we use norm map

N: Z|V-5| — Q, a + bvV—5 — a® + 5b?



Algebraic number

Why does unique factorization fail in Z[\/—S]? The problem is that
irreducible elements in Z[\/—S] need not be prime.

N(1+ vV-5)=6=23

1 + V=5 divides 2.3 but it divides neither 2 nor 3. In fact, in an
integral domain in which factorizations exist (e.g. a Noetherian ring),
factorization is unique if all irreducible elements are prime.

(Noetherian ring is a ring in which every non-empty set of ideals has a maximal
element)



Complex number
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Quaternion - Brief History

* Invented in 1843 by Irish mathematician Sir William
Rowan Hamilton

* Founded when attempting to extend complex numbers
to the 3" dimension

* Discovered on October 16 in the form of the equation:

i*=j%=k*=ijk=-1



Quaternion - Brief History

Most mathematicians have heard the story of
how Hamilton invented the quaternions.

In 1835, at the age of 30, he had discovered
how to treat complex numbers as pairs of real
numbers. Fascinated by the relation between
C and 2-dimensional geometry,

he tried for many years to invent a bigger
algebra that would play a similar role in

3-dimensional geometry. In modern language,
it seems he was looking for a 3-dimensional
normed division algebra.
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Quaternion

e Definition

i
q=0, g, +0,]+9;k=0, +q <%V
k@j

i2=j2=k2=—1
ij =—ji =k
jk = —kj=i
Ki=—ik = |



Applications of Quaternions

* Used to represent rotations and orientations of objects
in three-dimensional space in:

* Computer graphics

* I[mage procession
Control theory
 Signal processing
Attitude controls

* Physics

Orbital mechanics

* Quantum Computing



Advantages of Quaternions

e Avoids Gimbal Lock

* Faster multiplication algorithms to combine successive rotations than
using rotation matrices

* Easier to normalize than rotation matrices
* Interpolation
* Representation color in image RGB

Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal
mechanism that occurs when the axes of two of the three gimbals are driven into a parallel
configuration, "locking" the system into rotation in a degenerate two-dimensional space.



Quaternions

Multiplication as Rotation and Scaling

MULTIPLICATION AS ROTATION MULTIPLICATION AS SCALING
* 1 Represents the identity * Choose a direction—not coordinate free
* Unit vectors represent rotations *Similar to complex multiplication

* ¢> 0 represents scaling

RULES REASONS

* Associative

* Similar to real multiplication

*Rotation is associative

*Distributes through addition » Rotation is a linear transformation

* Identity and inverses

* Rotations can be undone

* Not Commutative * Rotation in 3-D not commutative

* Preserves length (||pqll =12l ¢l

* Rotation is an isometry

VSB-TUO, Ostrava 2014

16



Singular value decomposition

For an mxn matrix A (Document term) of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

A=UzV'
A RN

mxm mxn Vis nxn

The columns of U are orthogonal eigenvectors of AA'.

The columns of V are orthogonal eigenvectors of A’A.
Eigenvalues A, ... A, of AAT are the eigenvalues of A’A.

o =4, > =diag(o,...0,)



Singular value decomposition

Dokuments

Terms

Ay
(n x m) (n x k)
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Latent semantic indexing 1/1

 LSI —k-reduced singular decomposition of the term-by-
document matrix

e Latent semantics — hidden connections between both terms
and documents determined on documents’ content

* Document matrix D=2V, (orD,/=V,T)
* Term matrix T=UZ, (orT/ =U,)
e Query in reduced a=Uq(orqg’ =2,1U,q)

dimension

VSB-TUO, Ostrava 2014
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Latent semantic indexing 1/2

In another words. Documents are represented as linear
combination of meta terms.

d,=Zw;m,
d, =2 wym,
d,=Zw;m

VSB-TUO, Ostrava 2014
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Retrieval in LSI

e Similarity between two documents or a document
and a query is usually calculated as normalized scalar
product of their vectors of meta term.

| D sy Whiy;
SE_-}H..({'Z;“ {'[3) — \/Zm » \/Zm “
=1 L =1



Picture matrix

pIC =

. ], |
pic '

(0 40
15 0

L0 20,

VSB-TUO, Ostrava 2014

22



Retrieval in LSI

Fig02
0.9740

VSB-TUO, Ostrava 2014

23



Retrieval in LS
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Latent semantic indexing

What is eigen-image?
Eigen-image is linear combination of pixels.
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Building collection
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Eigen-images

0 1 2 3 4 S
10 1 12 13 14 15
30 31 32 33 34 35
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DCT
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Eigen-images

" _ +S
A
+S
+s, +Ss v 7
6

VSB-TUO, Ostrava 2014

30



Quaternion SVD

Selected eigen-images X + Ri + Gj + Bk

o

* . .
-
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SC Pei, JH Chang, JJ Ding, Quaternion matrix singular value decomposition and its applications for color image
processing, Image Processing, ICIP, 2003.
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Quaternion SVD

SC Pei, JH Chang, JJ Ding, Quaternion matrix singular value decomposition and its applications for color image
processing, Image Processing, ICIP, 2003.
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OCTONIONS

There are exactly four normed division algebras: the real numbers R,
complex numbers C, quaternions H, and octonions Q.

The real numbers are the dependable breadwinner of the family, the
complete ordered field we all rely on.

The complex numbers are a slightly ashier but still respectable younger
brother: not ordered, but algebraically complete.

The quaternions, being noncommutative, are the eccentric cousin who
is shunned at important family gatherings.

The octonions are the crazy old uncle nobody lets out of the attic: they
are nonassociative.



OCTONIONS

Theorem 1. R, C, Hl and © are the only normed division algebras.
Theorem 2. R, C, Hl and © are the only alternative division algebras.

The first theorem goes back to an 1898 paper by Hurwitz. It was subsequently
generalized in many directions, for example, to algebras over other fields.

A version of the second theorem appears in an 1930 paBer by Zorn. Note that we
did not state that R;C;H and O are the only division algebras.

This is not true. For example, we have already described a way to get 4-dimensional
division algebras that do not have multiplicative inverses. However, we do have this
fact:

Theorem 3. All division algebras have dimension 1; 2; 4, or 8.

This was independently proved by Kervaire and Bott in 1958.



Number construction
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Hyperreal number
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Recall: The Axiomatic Definition of IR

Definition: We define the structure (R,+,-,<) by the following
axioms:

1) (R,+,-) i1s a field, 1.e. + and - satisfy the usual properties, e.g.
X-(Y +2) =Xy + X-Z.
2) (R,<) 1s a linear order, I.e. for any x and y, either

X <yorx=yorx>y,and the relation < Is transitive, I.e. for
all x,y,and z; X<y <z = X<z

3) < Is congruent with respect to + and -, I1.e. for all x,y, and z;
X<y=X+z<y+z Also,x<yandz>0= xz<yz.

4) Every nonempty subset of R that is bounded above, has a
least upper bound.



Question: Are these axioms consistent?

|.e.: Is there any mathematical structure that satisfies all of
Axioms 1-47?

Theorem: Yes. In fact, there iIs a unigue structure (R,+,-,<) (up
to iIsomorphism) satisfying all of Axioms 1-4.

Note: This means that any other structure (R ’',+',-",<’)
satisfying the axioms is just a renaming of (R,+,-,<), I.e. there

IS a bijection f: R — R, that respects the arithmetic operations
and the order.



Question: How is IR constructed?

Step 1: We recursively define the natural numbers
together with their addition and multiplication.

Step 2: We define the non-negative rational numbers

Q* as the set of equivalence classes of pairs of

positive natural numbers (x,y) under the equivalence:
(X1,Y1) = (X0,¥2) 1T (XY, = XoY4)

Reason: A pair (x,y) just denotes x/y.

Also, we define addition and multiplication of these.

Step 3: We define the set of all rational numbers as
the union Q*u Q~ {0}, where Q- Is just an identical
copy of Q*, together with addition and multiplication.



Construction of R, Step 4.

Definition: A Cauchy sequence (x,) IS a sequence
satisfying lim_sup,|X. ., — X,/ =0
Example: Any sequence of rationals (x,) of the

form x, = 0.d,d,ds...d, Is Cauchy. In particular, the
sequence 0.9,0.99,0.999,... 1s Cauchy.

Step 4: R is the set of equivalence classes of
Cauchy sequences (x,) of rationals under the
equivalence: (x,) = (y,) iff lim (x,—y.) =0

Note: We simply identify each Cauchy sequence
with its limit.



Recall

o Definition: A number N is infinite iff N > n for all
natural numbers n.

 [Fact: There are no infinite numbers in R.

 Thus, to Introduce infinite numbers, we must
abandon one of Axioms 1-4.

* We decide to abandon Axiom 4 (the Completeness
Axiom), and introduce the following axiom:

« AXxiom 47: There is an infinite number N.
* Question: Are Axioms 1,2,3,4" consistent?



Answer: Yes.

 Theorem: There are many possible structures
(R*,+",-",<), satisfying Axioms 1,2,3,4".

 |n each of these structures there i1s an infinite
number N, 1.e. N > n, for all natural numbers n.

* In fact, there are infinitely many such infinite
numbers, e.g. N+r, withre R, and rN, with r > 0.

« Also, there must also be a positive infinitesimal
number ¢ = 1/N, 1.e. 0 < ¢ < 1/n, for all natural
numbers n.

* In fact, there are infinitely many of those.



Infinites and Infinitesimals Picture 1

-9 & 9~

100 —€ 100 100+ €

Negative Finite Positive
infinite infinite
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Infinites and Infinitesimals Picture 2

Negative Positive
<« infinite infinite — 5

- —— o ————— Tt

S -9
1 1
- + 1 . =—1 =+1 .
Infinite Infinitesimal ¢ € Infinite
telescope microscope telescope
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Construction of the Hyperreals R °

* We start with the set of infinite sequences (x,) of
real numbers.

« Define addition and multiplication componentwise,
* le. (Xn) + (yn) = (Xn T yn)! and (Xn)'(yn) - (Xn°yn)-

* Problem: The product of the two sequences
(0,1,0,1,0,1,...)-(1,0,1,0,1,0,...) =(0,0,0,0,0,0,...)

* Since (0,0,0,0,0,0,...) 1s the zero element, one of
the sequences (0,1,0,1,0,1,...),(1,0,1,0,1,0,...) 1s
declared zero.

e Question: How?



The Need of Free Ultrafilters

 Definition: A filter over the set of natural numbers N Is a
set F of subsets of N, such that:

e 1) ¢gF

« 2)(AeFand AcB) = BeF

« 3)(AeFandBeF) = (AnB)eF

« An ultrafilter F is a filter satisfying the extra condition:
« 4)(AuB)=N= (AcForBeF)

« Example: For any number neN , the set of subsets defined
by F = {A| ne A} is an ultrafilter over N.

« Afree ultrafilter is an ultrafilter containing no finite sets.
« Fact: There are infinitely many free ultrafilters.



Construction of R™ (cont.)

« Given a free ultrafilter F, we define the following
relation on the set of infinite sequences of real
numbers:

* (%) = (o) 1T {n: X, =y, }eF.
« Fact: = is an equivalence relation, that respects the
operations + and - defined on the sequences.

« (R 7,+,) Is the set of equivalence classes of
sequences together with the operations defined
componentwise.

« Also, defining (x,) < (y,) iff {n: x,<vy,}eF, we get
the ordered field of hyperreals (R*,+,-,<)



Behavior of R

Theorem: The structure (R",+,-,<) is an ordered
field that behaves like R in a very strong sense, as
Illustrated by:

The Extension Principle: R™ extends R; +, -, and
In R™ extend those of R. Moreover, each real
function f on R extends to a function f “ on R™. We
call f * the natural extension of f.

The Transfer Principle: Each valid first order
statement about R is still valid about R ™, where
each function is replaced by its natural extension.



The Standard Part Principle

o Definitions:

 Anumber xin R ™ is called finite iff |x| < r for some
positive real number r in R.

« Anumber xin R is called infinitesimal iff |x| <r
for every positive real number r in R.

« Two numbers x and y are called infinitely close to
each other (x = y) Iff x — y Is infinitesimal.

« The Standard Part Principle: Every finite
hyperreal x is infinitely close to a unique real
number r. r is called the standard part of x (st(x)).



Nonstandard Analysis

« Using hyperreals we define:

(%) :st( f (X+ AX) — f(x)j
AX

for every (any) nonzero infinitesimal Ax, and:

b—a

T f (X)dx = st(i f(a+ kAx)ij, AX — .
N.

for every (any) nonzero positive infinite integer



Picture of the Derivative

hyperreal
straight line

I
fla+ Ax) — fla)
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Picture of the Definite Integral

f(x)




Number construction — cont.

53
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Surreal number
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Surreal number

Donald E. Knuth, Nadrealna cisla
Pokroky matematiky, fyziky a astronomie, Vol. 23 (1978), No. 2, 66--76



The Construction of R from Q.

Recall that the set of reals R can be constructed from
the set of rationals @ using Cauchy sequences.

A real number iIs defined as an equivalence class of
Cauchy sequences under the equivalence:

(Xn) = (yp) 1T lim, (X, —y,) =0
A modification on this idea lead to the set Q™ of
hyperreal numbers.

Another alternative of constructing Q is to use
Dedekind cuts.



Dedekind Cuts

Definition: A Dedekind Cut of Q Is a pair (X,Y) of
nonempty sets of @Q, such that:

1) Xand Y partition Q , 1.e. XUY =Q and XNnY =
2) X <Y, le. forall xeX,yeY, x<y
3) X has no greatest element

Example: For any real re R, we get the Dedekind
cut X={xe Q:x<r}; Y={ye Q:r>y}.

Also, each Dedekind cut uniquely determines a real
number.

We define R to be the set of Dedekind cuts.



Defining the Surreal Numbers

« Inspired by Dedekind cuts, we get the following:

definition:

1) A'surreal number x is a pair (X, ,Xg), Where:

« a) X, and X are themselves sets of surreals

* D) X <Xy, Le. forall x, eX|, XxpeXg, X < Xg

2) For two surreals x = (X, Xg), Y = (Y,YR),
y<xiffnotx<y

3) Also, x<y

* ) X<VYg lLe forallygzeYg, X <yg

* b) X_ <y, e forall x eX,, x <y

Note: This definition 1s “very” recursive.



What could a recursive definition do?

Though our definition of surreals Is recursive, we
get the following examples:

The first surreal we can construct is 0 = ({}.{})

Note: The empty set {} Is a set of surreals, whatever
they are.

Also, for all x, ,xpe{}, X, < Xg. (*)

This is true, since the statement (*) is logically
equivalent to: (VX Xg)(X, Xpe{} = X < Xg).

We say that such statements are vacuously true.

Also, {} <0< {}. Thus, {3{}) < {}.{}), i.e. 0<0.



More Surreals

With the hyperreal 0 = ({},{}) we also get:
1=({0}{}). Note: {0} <{}.

-1 =({},{0}): Note: {} < {0}.

These names are justified by the following:
Fact: -1<0<1

Proof: Since 0 <0, ({0},{}) < ({}.{}) =01is not
true. Thus, ({}.{}) < ({0} {}), 1.e.0< 1.

Also, ({}.{}) < ({},{0}) is not true.

Thus, ({}.{0}) < {}.{}),i.e.0< 1.

However, ({0},{0}) is NOT a surreal number, since
It Is not true that 0 < 0.



A Simpler Notation:

1T X = ({X 1, X{ 25-+- }5{XR1) XRos---}), WE CaN simply
denote it by: X = {X, 1, X 5,...[Xp1, Xpo,...}, @S If XIS
just a set with left and right elements. Thus:

0={}
1= {0}
~1= {0}

Note: The notation X = {X, 1, X 5,...[Xr1, Xgos---}
does not necessarily mean that the two sets

X Xigse -} and {Xgy, Xgose o
are finite or countable.



More Surreals:

0=A{l}
1={0[}
2={1]}
3={2]}, actually 3 = {{{{H{H}{HH{HH{D).
... (These look like the ordinals)

o=1{0,1,23,...|}

Fact: 0<1<2<3<...<®

In general: {X, {, X_5,...[Xg1, Xgo»-..} defines a surreal
X, such that: x| 1, X_ ,-..<X < Xgq, Xgo»- - -




Negative Surreals:

0={} -1={0}, -2={|-1}, -3 ={|-2}
... (These are the negative ordinals)
Also, - ={|...,-3,-2,-1,0}

In general: For a surreal X = {X; {,X 5,...[Xg1,Xr2,..-},
we define: —Xx = {—Xg1,Xro 5+« =X 1,X[ 9s+-- } -

—x Is called the negation of x.

Note: This definition is again recursive!

Our notations are justified, e.g. -2 = —{1|} = {|-1}.
Also, 0=—{|} ={|} =0.



Equality of Surreals

Example: Let x = {-1|1}.
One can show that x <0 and 0 < x.
If <is a linear order, we need to identify x with O.

Definition: For two surreals x and y, we write x =y
Iff both x <y andy <x. (*)

Note: Actually, (*) above defines an equivalence
relation, and the surreals are defined to be its
equivalence classes.

Examples: {-2,-1|0,1} = {-1[1} ={|} =0,
{1,2,4,8,16,...]} = {0,1,2,3,...]} =®



Addition of Surreals:

1T X ={X_ 1, . Xgpp.--; ANA Y = {Y, 1,.-.[Yre,-.. } are surreals,
define: x+y = {X {+Y,... . XY, 1,...[Xg1 Y, .. . X+YR1s. .. }

Motivation: A surreal X = {X,,...[Xr1,...} Can be
considered as a special kind of a game played between

two players L and R.
If L is next, he chooses one of the left options x, ,,....
If R Is next, she chooses one of the right options Xg.,....

Thus, x+y i1s both x and y played in parallel. Each player
chooses to move in any one of them, leaving the other

unchanged.
The above definition Is again recursive!



Examples of Sums:

For surreals X = {X; 1,...[Xg1s--- }» Y =Y, 1o+ - [YR1s--- } »
X+Y = {X 1Y,.. . XY 1,0 [ Xry Y, XA YRy,

Examples:

1+1={0|} +{0[} ={0+1,1+0[} = {1|} =2

2+ 1={1} + {0} = {1+1,2+0[} = {2|} = 3, etc..
1+(-1)={0]} +{l0} ={0+(-1)[1+0} = {-1|1} = 0.
o+1=1{12.3,..0/}={o}
o+2=1{1.23,...,0+1|} = {o+1]}, etc..

-0 + (-1) = {|-w,...,-3,-2,-1,0|} = {|-»}, etc..



Exercises:

Show that for all surreals x, v, z:
X+y=X+y
(X+y)+z=x+(y+2)
X+ 0 =X

X+ (—x)=0

Thus, the class of surreals with addition behaves like
a group.

Note: the class of surreals is a proper class (too big
to be a set). Thus, 1t’s not a group.



More Examples of Sums:

For surreals X = {X; 1,...[Xg1s--- }» Y =Y, 1o+ - [YR1s--- } »
X+Y = {X 1Y,.. . XY 1,0 [ Xry Y, XA YRy,

Examples:
{0|]1} + {0|1} =1, thus we call {0|1} ="
10)2} + {0|"2} = 12, thus we call {02} = Y4

In general, we can get the set D of all dyadic
fractions: (2k+1)/2"1 = {k/2"|(k+1)/2"}

Question: Where are the rest of the reals?
Answer: 1t ={deD:d<n|deD:d>nr}



Multiplication of Surreals:

1T X = {X 0, X5 Y = Yiro- - [YReoe - > ATE
surreals, define xy to be the surreal:

XY={X 1Y *+ XY 1= XL 1YL 1> Xr1Y + XYR1— Xr1 YR1s-- -]
X 1Y + XYr1 — XL1YR1s- -5 XR1Y T XYi1 — XriYito- -+

The definition Is again recursive!

Theorem: Multiplication has all the required
properties. E.g., for all surreals x,y,z,

Xy =Xy, (xy)z = x(yz), X1 =X, and
For all x # 0, there is x71, such that x(x™%) = 1.
Also, x(y + z) =xy + xz, and x0 = 0.



The Largest Ordered Field

Th
orc
orc

eorem: The class of surreals behaves like an
ered field. Moreover, it includes a copy of every
ered field.

In

particular, it includes all hyperreals.

E.g. ot = {0]...,%,%,1} is an infinitesimal.

The class of surreals includes the class of all
ordinals, and consequently all cardinals.

It also includes other stuff like —o, ®,/2, etc..

Re

member: The class of surreals Is too large to be a

set.
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