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Number construction 
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Algebraic number 

An algebraic number field is a finite extension of ℚ; an algebraic 
number is an element of an algebraic number field.  

 

Ring of integers. Let 𝐾 be an algebraic number field. Because 𝐾 is of 
finite degree over ℚ, every element α of 𝐾 is a root of monic 
polynomial 

𝑓 𝑥 =  𝑥𝑛 +  𝑎1𝑥𝑛−1 +  … +  𝑎1       𝑎𝑖 ∈ ℚ 

If α is root of polynomial with integer coefficient, then α is called an 
algebraic integer of 𝐾. 
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Algebraic number 

Consider more generally an integral domain 𝐴. An element a ∈ 𝐴 is said 
to be a unit if it has an inverse in 𝐴; we write 𝐴∗ for the multiplicative 
group of units in 𝐴. 

 

An element 𝑝 of an integral domain 𝐴 is said to be irreducible if it 

is neither zero nor a unit, and can’t be written as a product of two 
nonunits. 

 

An element 𝑝 of 𝐴 is said to prime if it is neither zero nor a unit, and if 

𝑝 𝑎𝑏 ⇒ 𝑝 𝑎 𝑜𝑟 𝑝|𝑏. 
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Algebraic number 

Example: 

In ℤ −5  we have  

6 = 2.3 = 1 +  −5 . (1 − −5) 

 

To see that 2, 3, 1 + −5, 1 − −5 are irreducible, and no two are 
associates, we use norm map 

 

𝑁:  ℤ −5 ⟶ ℚ, 𝑎 + 𝑏 −5 ⟶ 𝑎2 + 5𝑏2 

 
VŠB-TUO, Ostrava 2014 8 



Algebraic number 

Why does unique factorization fail in ℤ −5 ? The problem is that 

irreducible elements in ℤ −5  need not be prime.  

 

𝑁 1 +  −5 = 6 = 2.3 

 1 +  −5 divides 2.3  but it divides neither 2 nor 3. In fact, in an 
integral domain in which factorizations exist (e.g. a Noetherian ring), 
factorization is unique if all irreducible elements are prime. 

(Noetherian ring is a ring in which every non-empty set of ideals has a maximal 
element) 
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Complex number 
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Quaternion - Brief History 

• Invented in 1843 by Irish mathematician Sir William 
Rowan Hamilton 

• Founded when attempting to extend complex numbers 
to the 3rd dimension 

• Discovered on October 16 in the form of the equation: 

 
𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 
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Quaternion - Brief History 

Most mathematicians have heard the story of 
how Hamilton invented the quaternions. 

In 1835, at the age of 30, he had discovered 
how to treat complex numbers as pairs of real 
numbers. Fascinated by the relation between 
ℂ and 2-dimensional geometry, 

he tried for many years to invent a bigger 
algebra that would play a similar role in  

3-dimensional geometry. In modern language, 
it seems he was looking for a 3-dimensional 
normed division algebra.  
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Quaternion 

• Definition 
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Applications of Quaternions 

• Used to represent rotations and orientations of objects 
in three-dimensional space in: 

 
• Computer graphics 
• Image procession 
• Control theory 
• Signal processing 
• Attitude controls 
• Physics 
• Orbital mechanics 
• Quantum Computing 
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Advantages of Quaternions 

• Avoids Gimbal Lock 

• Faster multiplication algorithms to combine successive rotations than 
using rotation matrices 

• Easier to normalize than rotation matrices 

• Interpolation 

• Representation color in image RGB 

 
Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal 
mechanism that occurs when the axes of two of the three gimbals are driven into a parallel 
configuration, "locking" the system into rotation in a degenerate two-dimensional space. 
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Quaternions 
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Singular value decomposition 

ii  

For an m n matrix A (Document term) of rank r  there exists a factorization 
(Singular Value Decomposition = SVD) as follows: 

TVUA 

mm mn V nn 

The columns of U are orthogonal eigenvectors of AAT. 

The columns of V are orthogonal eigenvectors of ATA. 
Eigenvalues 1 … r of AAT are the eigenvalues of ATA. 

 rdiag  ...1
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Singular value decomposition 
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Latent semantic indexing 1/1 

• LSI – k-reduced singular decomposition of the term-by-
document matrix 

• Latent semantics – hidden connections between both terms 
and documents determined on documents’ content 

 

• Document matrix    Dk= k Vk
T

 (or Dk’ = Vk
T) 

• Term matrix  Tk= Uk k   (or Tk’ = Uk) 

• Query in reduced         qk= Uk
T q (or qk’ = k

-1 Uk
T

 q)  

 dimension 
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Latent semantic indexing 1/2 

   In another words. Documents are represented as linear 
combination of meta terms. 

d1 = Σ w1imi  

d2 = Σ w2imi  

……………. 

dn = Σ wnimi  
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Retrieval in LSI 

• Similarity between two documents or a document 
and a query is usually calculated as normalized scalar 
product of their vectors of meta term. 
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Retrieval in LSI 
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Retrieval in LSI 
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Latent semantic indexing 

   What is eigen-image? 

  Eigen-image is linear combination of pixels. 
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Building collection 
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Eigen-images 
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DCT 
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(b) k = 15,   (c) k = 50,  (d) k = 250 
VŠB-TUO, Ostrava 2014 

29 



Eigen-images 
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Quaternion SVD 
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Selected eigen-images  𝑋 + 𝑅𝑖 + 𝐺𝑗 + 𝐵𝑘 
 

SC Pei, JH Chang, JJ Ding, Quaternion matrix singular value decomposition and its applications for color image 

processing,  Image Processing, ICIP, 2003. 



Quaternion SVD 
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OCTONIONS 

There are exactly four normed division algebras: the real numbers ℝ, 
complex numbers ℂ, quaternions ℍ, and octonions 𝕆.  

The real numbers are the dependable breadwinner of the family, the 
complete ordered field we all rely on.  

The complex numbers are a slightly ashier but still respectable younger 
brother: not ordered, but algebraically complete.  

The quaternions, being noncommutative, are the eccentric cousin who 
is shunned at important family gatherings.  

The octonions are the crazy old uncle nobody lets out of the attic: they 
are nonassociative. 
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OCTONIONS 

Theorem 1. ℝ, ℂ, ℍ and 𝕆 are the only normed division algebras. 

Theorem 2. ℝ, ℂ, ℍ and 𝕆 are the only alternative division algebras. 

 

The first theorem goes back to an 1898 paper by Hurwitz. It was subsequently 
generalized in many directions, for example, to algebras over other fields. 

A version of the second theorem appears in an 1930 paper by Zorn. Note that we 
did not state that R;C;H and O are the only division algebras. 

This is not true. For example, we have already described a way to get 4-dimensional 

division algebras that do not have multiplicative inverses. However, we do have this 

fact: 

Theorem 3. All division algebras have dimension 1; 2; 4; or 8. 

This was independently proved by Kervaire  and Bott in 1958. 
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Number construction 
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Hyperreal number 
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Recall: The Axiomatic Definition of ℝ 

Definition: We define the structure (ℝ,+,,<) by the following 
axioms: 

1) (ℝ,+,) is a field, i.e. + and  satisfy the usual properties, e.g. 
x(y + z) = xy + xz.  

2) (ℝ,<) is a linear order, i.e. for any x and y, either   

x < y or x = y or x > y, and the relation < is transitive, i.e. for 
all x,y, and z; x < y < z  x < z. 

3) < is congruent with respect to + and , i.e. for all x,y, and z; 
x < y  x + z < y + z. Also, x < y and z > 0  xz < yz.  

4) Every nonempty subset of ℝ that is bounded above, has a 
least upper bound. 
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Question: Are these axioms consistent? 

I.e.: Is there any mathematical structure that satisfies all of 
Axioms 1-4? 

Theorem: Yes. In fact, there is a unique structure (ℝ,+,,<) (up 
to isomorphism) satisfying all of Axioms 1-4. 

Note: This means that any other structure (ℝ ,+,,<) 
satisfying the axioms is just a renaming of (ℝ,+,,<), i.e. there 
is a bijection f : ℝ  ℝ , that respects the arithmetic operations 
and the order. 
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Question: How is ℝ constructed? 

• Step 1: We recursively define the natural numbers 
together with their addition and multiplication. 

• Step 2: We define the non-negative rational numbers 
Q+ as the set of equivalence classes of pairs of 
positive natural numbers (x,y) under the equivalence: 
   (x1,y1)  (x2,y2) iff (x1y2 = x2y1) 

• Reason: A pair (x,y) just denotes x/y. 

• Also, we define addition and multiplication of these.  

• Step 3: We define the set of all rational numbers as 
the union ℚ+ ℚ{0}, where ℚ is just an identical 
copy of ℚ+, together with addition and multiplication. 
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Construction of ℝ, Step 4. 

• Definition: A Cauchy sequence (xn) is a sequence 
satisfying limn supk|xn+k  xn| = 0  

• Example: Any sequence of rationals (xn) of the 
form xn = 0.d1d2d3…dn is Cauchy. In particular, the 
sequence 0.9,0.99,0.999,… is Cauchy. 

• Step 4: ℝ is the set of equivalence classes of 
Cauchy sequences (xn) of rationals under the 
equivalence: (xn)  (yn) iff limn(xn  yn) = 0  

• Note: We simply identify each Cauchy sequence 
with its limit. 
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Recall 

• Definition: A number N is infinite iff N > n for all 
natural numbers n. 

• Fact: There are no infinite numbers in ℝ. 

• Thus, to introduce infinite numbers, we must 
abandon one of Axioms 1-4. 

• We decide to abandon Axiom 4 (the Completeness 
Axiom), and introduce the following axiom: 

• Axiom 4*: There is an infinite number N. 

• Question: Are Axioms 1,2,3,4* consistent? 

VŠB-TUO, Ostrava 2014 41 



Answer: Yes.  

• Theorem: There are many possible structures 
(ℝ*,+*,*,<*), satisfying Axioms 1,2,3,4*. 

• In each of these structures there is an infinite 
number N, i.e. N > n, for all natural numbers n. 

• In fact, there are infinitely many such infinite 
numbers, e.g. N+r, with r ℝ, and rN, with r > 0.  

• Also, there must also be a positive infinitesimal 
number  = 1/N, i.e. 0 <  < 1/n, for all natural 
numbers n. 

• In fact, there are infinitely many of those. 
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Infinites and Infinitesimals Picture 1 
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Infinites and Infinitesimals Picture 2 
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Construction of the Hyperreals ℝ * 

• We start with the set of infinite sequences (xn) of 
real numbers. 

• Define addition and multiplication componentwise,  

• i.e. (xn) + (yn) = (xn + yn), and (xn)(yn) = (xnyn). 

• Problem: The product of the two sequences 
(0,1,0,1,0,1,…)(1,0,1,0,1,0,…) = (0,0,0,0,0,0,…)  

• Since (0,0,0,0,0,0,…) is the zero element, one of 
the sequences (0,1,0,1,0,1,…),(1,0,1,0,1,0,…) is 
declared zero. 

• Question: How? 
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The Need of Free Ultrafilters 

• Definition: A filter over the set of natural numbers N is a 
set F of subsets of N, such that: 

• 1) F 

• 2) (AF and AB)  BF  

• 3) (AF and BF)  (AB)F 

• An ultrafilter F is a filter satisfying the extra condition: 

• 4) (AB) = N  (AF or BF)  

• Example: For any number nN , the set of subsets defined 
by F = {A| nA} is an ultrafilter over N.  

• A free ultrafilter is an ultrafilter containing no finite sets. 

• Fact: There are infinitely many free ultrafilters. 
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Construction of ℝ* (cont.) 

• Given a free ultrafilter F, we define the following 
relation on the set of infinite sequences of real 
numbers: 

• (xn)  (yn) iff {n: xn = yn}F. 

• Fact:  is an equivalence relation, that respects the 
operations + and  defined on the sequences. 

• (ℝ *,+,) is the set of equivalence classes of 
sequences together with the operations defined 
componentwise. 

• Also, defining (xn) < (yn) iff {n: xn < yn}F, we get 
the ordered field of hyperreals (ℝ*,+,,<)  
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Behavior of ℝ* 

• Theorem: The structure (ℝ*,+,,<) is an ordered 
field that behaves like R in a very strong sense, as 
illustrated by: 

• The Extension Principle: ℝ* extends ℝ; +, , and 
in ℝ* extend those of ℝ. Moreover, each real 
function f on ℝ extends to a function f * on ℝ*. We 
call f * the natural extension of f.  

• The Transfer Principle: Each valid first order 
statement about ℝ is still valid about ℝ *, where 
each function is replaced by its natural extension. 
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The Standard Part Principle 

• Definitions:  

• A number x in ℝ * is called finite iff |x| < r for some 
positive real number r in ℝ. 

• A number x in ℝ* is called infinitesimal iff |x| < r 
for every positive real number r in ℝ. 

• Two numbers x and y are called infinitely close to 
each other (x  y) iff x  y is infinitesimal. 

• The Standard Part Principle: Every finite 
hyperreal x is infinitely close to a unique real 
number r. r is called the standard part of x (st(x)). 
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Nonstandard Analysis 

• Using hyperreals we define:  
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for every (any) nonzero infinitesimal x, and:  

for every (any) nonzero positive infinite integer N.  
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Picture of the Derivative 
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Picture of the Definite Integral 
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Number construction – cont. 
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Surreal number 
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Surreal number 

 

 

 

Donald E. Knuth, Nadreálná čísla 

Pokroky matematiky, fyziky a astronomie, Vol. 23 (1978), No. 2, 66--76 
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The Construction of ℝ from ℚ. 

• Recall that the set of reals ℝ can be constructed from 
the set of rationals ℚ using Cauchy sequences. 

• A real number is defined as an equivalence class of 
Cauchy sequences under the equivalence:  
  (xn)  (yn) iff limn(xn  yn) = 0 

• A modification on this idea lead to the set ℚ* of 
hyperreal numbers. 

• Another alternative of constructing ℚ is to use 
Dedekind cuts. 
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Dedekind Cuts 

• Definition: A Dedekind Cut of ℚ is a pair (X,Y) of 
nonempty sets of ℚ, such that: 

• 1) X and Y partition ℚ , i.e. XY = ℚ and XY =  

• 2) X < Y, i.e. for all xX, yY, x < y 

• 3) X has no greatest element 

• Example: For any real r ℝ, we get the Dedekind 
cut: X = {x ℚ : x < r}; Y = {y ℚ : r  y}. 

• Also, each Dedekind cut uniquely determines a real 
number.  

• We define ℝ to be the set of Dedekind cuts. 
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Defining the Surreal Numbers 

• Inspired by Dedekind cuts, we get the following:    
definition:  

• 1) A surreal number x is a pair (XL,XR), where: 

• a) XL and XR are themselves sets of surreals 

• b) XL < XR, i.e. for all xLXL, xRXR, xL < xR 

• 2) For two surreals x = (XL,XR), y = (YL,YR),  
 y < x iff not x  y  

• 3) Also, x  y 

• a) x < YR, i.e. for all yRYR, x < yR  

• b) XL < y, i.e. for all xLXL, xL < y 

• Note: This definition is “very” recursive. 
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What could a recursive definition do? 

• Though our definition of surreals is recursive, we 
get the following examples: 

• The first surreal we can construct is 0 = ({},{}) 

• Note: The empty set {} is a set of surreals, whatever 
they are.  

• Also, for all xL,xR{}, xL < xR. (*) 

• This is true, since the statement (*) is logically 
equivalent to: (xL,xR)(xL,xR{}  xL < xR). 

• We say that such statements are vacuously true. 

• Also, {} < 0 < {}. Thus, ({},{})  ({},{}), i.e. 0  0. 
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More Surreals 

• With the hyperreal 0 = ({},{}) we also get:  

• 1 = ({0},{}). Note: {0} < {}.  

• 1 = ({},{0}): Note: {} < {0}.  

• These names are justified by the following: 

• Fact: 1 < 0 < 1 

• Proof: Since 0  0, ({0},{})  ({},{}) = 0 is not 
true. Thus, ({},{}) < ({0},{}), i.e. 0 < 1. 

• Also, ({},{})  ({},{0}) is not true.    
Thus, ({},{0}) < ({},{}), i.e. 0 < 1. 

• However, ({0},{0}) is NOT a surreal number, since 
it is not true that 0 < 0. 
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A Simpler Notation: 

• If x = ({xL1, xL2,…},{xR1, xR2,…}), we can simply 
denote it by: x = {xL1, xL2,…|xR1, xR2,…}, as if x is 
just a set with left and right elements. Thus:  

• 0 = {|}  

• 1 = {0|} 

• 1 = {|0} 

• Note: The notation x = {xL1, xL2,…|xR1, xR2,…} 
does not necessarily mean that the two sets  
  {xL1, xL2,…} and {xR1, xR2,…}      
are finite or countable.   
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More Surreals: 

• 0 = {|}  

• 1 = {0|} 

• 2 = {1|} 

• 3 = {2|}, actually 3 = ({({({({},{})},{})},{})},{}).  

• ... (These look like the ordinals) 

•  = {0,1,2,3,…|} 

• Fact: 0 < 1 < 2 < 3 < … <  

• In general: {xL1, xL2,…|xR1, xR2,…} defines a surreal 
x, such that: xL1, xL2,…< x < xR1, xR2,… 
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Negative Surreals: 

• 0 = {|}, 1 = {|0}, 2 = {|1}, 3 = {|2} 

• ... (These are the negative ordinals) 

• Also,  = {|…,3,2,1,0} 

• In general: For a surreal x = {xL1,xL2,…|xR1,xR2,…}, 
we define: x = {xR1,xR2 ,…|xL1,xL2,…}.  

• x is called the negation of x. 

• Note: This definition is again recursive! 

• Our notations are justified, e.g. 2 = {1|} = {|1}.  

• Also, 0 = {|} = {|} = 0.  
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Equality of Surreals 

• Example: Let x = {1|1}.  

• One can show that x  0 and 0  x.  

• If  is a linear order, we need to identify x with 0. 

• Definition: For two surreals x and y, we write x = y 
iff both x  y and y  x. (*) 

• Note: Actually, (*) above defines an equivalence 
relation, and the surreals are defined to be its 
equivalence classes.   

• Examples: {2,1|0,1} = {1|1} = {|} = 0, 

• {1,2,4,8,16,…|} = {0,1,2,3,…|} =  
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Addition of Surreals: 

• If x = {xL1,…|xR1,…} and y = {yL1,…|yR1,…} are surreals, 
define: x+y = {xL1+y,…,x+yL1,…|xR1+y,…,x+yR1,…} 

• Motivation: A surreal x = {xL1,…|xR1,…} can be 
considered as a special kind of a game played between 
two players L and R.  

• If L is next, he chooses one of the left options xL1,….  

• If R is next, she chooses one of the right options xR1,…. 

• Thus, x+y is both x and y played in parallel. Each player 
chooses to move in any one of them, leaving the other 
unchanged.  

• The above definition is again recursive! 
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Examples of Sums: 

• For surreals x = {xL1,…|xR1,…}, y = {yL1,…|yR1,…}, 
x+y = {xL1+y,…,x+yL1,…|xR1+y,…,x+yR1,…} 

• Examples: 

• 1 + 1 = {0|} + {0|} = {0+1,1+0|} = {1|} = 2 

• 2 + 1 = {1|} + {0|} = {1+1,2+0|} = {2|} = 3, etc.. 

• 1 + (1) = {0|} + {|0} = {0+(1)|1+0} = {1|1} = 0.  

•  + 1 = {1,2,3,…,|} = {|} 

•  + 2 = {1,2,3,…,+1|} = {+1|}, etc.. 

•  + (1) = {|,…,3,2,1,0|} = {|}, etc.. 
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Exercises: 

• Show that for all surreals x, y, z:  

• x + y = x + y 

• (x + y) + z = x + (y + z) 

• x + 0 = x 

• x + (x) = 0 

• Thus, the class of surreals with addition behaves like 
a group. 

• Note: the class of surreals is a proper class (too big 
to be a set). Thus, it’s not a group. 
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More Examples of Sums: 

• For surreals x = {xL1,…|xR1,…}, y = {yL1,…|yR1,…}, 
x+y = {xL1+y,…,x+yL1,…|xR1+y,…,x+yR1,…} 

• Examples: 

• {0|1} + {0|1} = 1, thus we call {0|1} = ½  

• {0|½} + {0|½} = ½, thus we call {0|½} = ¼  

• In general, we can get the set D of all dyadic 
fractions: (2k+1)/2n+1 = {k/2n|(k+1)/2n} 

• Question: Where are the rest of the reals? 

• Answer:  = {dD: d <  | dD: d > } 
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Multiplication of Surreals: 

• If x = {xL1,…|xR1,…}, y = {yL1,…|yR1,…}, are 
surreals, define xy to be the surreal: 

• xy={xL1y + xyL1  xL1yL1,…, xR1y + xyR1  xR1 yR1,…| 
   xL1y + xyR1  xL1yR1,…, xR1y + xyL1  xR1yL1,…}  

• The definition is again recursive! 

• Theorem: Multiplication has all the required 
properties. E.g., for all surreals x,y,z,  

• xy = xy, (xy)z = x(yz), x1 = x, and 

• For all x  0, there is x1, such that x(x1) = 1. 

• Also, x(y + z) = xy + xz, and x0 = 0. 
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The Largest Ordered Field 

• Theorem: The class of surreals behaves like an 
ordered field. Moreover, it includes a copy of every 
ordered field.  

• In particular, it includes all hyperreals.  

• E.g. 1 = {0|…,¼,½,1} is an infinitesimal. 

• The class of surreals includes the class of all 
ordinals, and consequently all cardinals. 

• It also includes other stuff like , 1/2, etc.. 

• Remember: The class of surreals is too large to be a 
set. 
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