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Bra-ket notation

V - Hilbert space (over C) with a dot product.
|ψ⟩ – element of V, state of a quantum system.
⟨ϕ| – element of V∗, linear form.
⟨ϕ |ψ ⟩ ∈ C – application of ⟨ϕ| onto |ψ⟩.
Riesz Theorem – ⟨ϕ| is a covector to |ϕ⟩. The dot product of |ϕ⟩ and
|ψ⟩ corresponds to ⟨ϕ |ψ ⟩.
Take |ψ⟩ s. t. ⟨ψ |ψ ⟩ = 1. Then |ψ⟩ ⟨ψ| (outer product) is an
orthogonal projection operator onto subspace spanned by |ψ⟩.
Let Â be a linear operator (physical observables are represented by
self-adjoint operators). Energy inner product

〈
ϕ
∣∣∣Â∣∣∣ψ〉. Expectation

value
〈
ψ
∣∣∣Â∣∣∣ψ〉.
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Let Â be a linear operator (physical observables are represented by
self-adjoint operators). Energy inner product

〈
ϕ
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Representation

Take Hilbert space V (one point particle) and element |ψ⟩ .
"Position basis" – given by "eigenvectors" of position operator
r̂ |r⟩ = r |r⟩.
Position representation of |ψ⟩ is given as ⟨r |ψ ⟩ = ψ(r) –
wavefunction.
Lack of correctness, but who cares? It does work...
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Wavefunction

System of N electrons and M nuclei is described by wavefunction

Ψ (R1,R2, . . . ,RM , r1, r2, . . . , rN ) ∈ L2
(
R3(M+N)

)
. (1)

Figure: System of N electrons and M nuclei

|Ψ|2 has the meaning of probability density.
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Schrödinger Equation

Stationary Schrödinger Equation:

ĤΨ = EΨ (2)

with Hamiltonian (including the electrostatic interaction)

Ĥ = −
M∑
n=1

∆n

2mn︸ ︷︷ ︸
T̂n

+
M∑

m,n=1
m<n

ZmZn

∥Rm −Rn∥︸ ︷︷ ︸
Vnn

−
N∑
i=1

∆i

2︸ ︷︷ ︸
T̂e

+
N∑

i,j=1
i<j

1

∥ri − rj∥︸ ︷︷ ︸
Vee

−
N∑
i=1

M∑
n=1

Zn

∥ri −Rn∥︸ ︷︷ ︸
Ven

.

(3)

An eigenproblem with point and/or continuous spectrum. Lowest
eigenvalue = ground state energy. Energy formula:

E [Ψ] =

〈
Ψ

∣∣∣Ĥ∣∣∣Ψ〉
⟨Ψ |Ψ ⟩

. (4)

The problem of finding the Ground State Energy is equivalent to the
solution of the minimization problem

EGS = minE [Ψ] . (5)
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Born-Oppenheimer Approximation

Problem (2) practically intractable (dimensionality, hidden symmetry in
Ψ).
Idea: The mass of the electron is several orders of magnitude lower than
the mass of the proton – an electron responds almost instantly to
a change of a nucleus position. Separation of the total wavefunction:

Ψ (R1, . . . ,RM , r1, . . . , rN ) = ψ (r1, . . . , rN )φ (R1, . . . ,RM ) . (6)

The original Schrödinger Equation (2) splits into the set of equations
(
T̂e + Vee + Ven + Vnn

)
ψ = Eelecψ, (7a)(

T̂n + Eelec (R1, . . . ,RM )
)
φ = Eφ. (7b)

Equation (7a) is the electronic part. For now we forget the second one.
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Example - hydrogen atom
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Example - hydrogen atom

(
−
1

2
∆−

1

∥r∥

)
ψ(r) = E · ψ(r). (8)
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Example - potential energy curves
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Representation of the wavefunction

We have to include another quantum coordinate associated with each
electron – spin. Consider one electron. Its wavefunction χ consists of two
parts:

1 Spatial part – orbital ϕ (r) ∈ L2
(
R3

)
.

2 Spin part – σ (s) ∈ S = R2. Basis:

σ↓ (s) =

{
0, s = 1

2
1, s = −1

2

, σ↑ (s) =

{
1, s = 1

2
0, s = −1

2

(9)

The total wavefunction (spin-orbital) is given as

χ (x) = ϕ (r) · σ (s) , x = (r, s) , (10)

which is an element of the tensor-product Hilbert space

V = L2
(
R3

)
⊗ S (11)

with induced dot product〈
χ
∣∣χ′ 〉 =

〈
ϕ
∣∣ϕ′ 〉 · 〈σ ∣∣σ′ 〉 . (12)
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Representation of the wavefunction

Basis {χ1, χ2, . . .} is generated as

χ2k−1 (x) = ϕk (r) · σ↑ (s) , (13)

χ2k (x) = ϕk (r) · σ↓ (s) , (14)

where k = {1, 2, 3, . . .} and ϕk form a basis of L2
(
R3

)
.

Now, consider a system of N electrons described by wavefunction
ψ (x1, . . . ,xN ) ∈ W, where W is also defined as a tensor-product space

W =
N⊗
ℓ=1

V(ℓ),
(
V(ℓ) = V

)
equipped with dot product

⟨ψ |ψ′ ⟩ =
N∏
ℓ=1

〈
χ(ℓ)

∣∣∣χ′(ℓ)
〉

(15)

defined for rank-1 elements (elementary tensors) as

ψ (x1, . . . ,xN ) =

N∏
ℓ=1

χ(ℓ) (xℓ) . (16)
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Representation of the wavefunction

Let {χ1, χ2, . . .} be basis of V. Then any general wavefunction can be
written as

ψ (x1, . . . ,xN ) =

∞∑
i=1

Ci ·
N∏
ℓ=1

χiℓ (xℓ) , (17)

where i = (i1, . . . , iN ). A wavefunction is antisymmetric when following
symmetry property is fulfilled:

CP (i) = sgn (P ) · Ci (18)

for all possible permutations P . NOTE: This condition also implies the
Pauli exclusion principle (any nonzero contribution must contain distinct
basis functions). The contributions belonging to a given expansion
coefficient can be grouped into Slater determinants

ψ
SD
i (x1,x2, . . . ,xN ) =

∣∣∣∣∣∣∣∣∣
χi1

(x1) · · · χi1
(xN )

.

.

.
. . .

.

.

.
χiN

(x1) · · · χiN
(xN ) ,

∣∣∣∣∣∣∣∣∣ (19)
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Representation of the wavefunction

Using the Slater determinants, we can write an equivalent expansion

ψ (x1, . . . ,xN ) =

∞∑
i1 = 1
iℓ+1 > iℓ

ℓ = 1, · · · , N − 1

Ci · ψSD
i (x1,x2, . . . ,xN ) . (20)

This gives us a method of generating basis of Slater determinants for
constructing any ψ. Theoretically, we may choose a basis of V, construct
all the possible slater determinants and find coefficients Ci representing
the GS wavefunction. However, there are many obstacles:

We have to make a cutoff to get a finite dimensional basis. How
many SDs do we need?
What is the best basis to get the lowest number of SDs for reaching
a given accuracy?
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Hartree-Fock Approximation

Idea: Instead of minimizing the coefficients with a fixed basis, take only
one Slater determinant and find a "basis" which minimizes the energy. ψ
is considered in a form of single Slater determinant

ψ (x1,x2, . . . ,xN ) =
1

√
N !

∣∣∣∣∣∣∣∣
χ1 (x1) · · · χ1 (xN )

.

.

.
. . .

.

.

.
χN (x1) · · · χN (xN ) ,

∣∣∣∣∣∣∣∣ (21)

generated from unknown orthonormal spin-orbitals χi (⟨χi |χj ⟩ = δij)).
By taking the orthonormality as a constraint, we may write down the
Lagrangian function

L [{χi} , {λij}] =
〈
ψSD

∣∣∣Ĥ∣∣∣ψSD
〉
+

N∑
i,j=1

(⟨χi |χj ⟩ − δij) (22)

Constrained minimum is reached if the first variation with respect to
orbitals vanishes, i.e.

δL [{χi} , {λij}] = 0. (23)
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Functional derivative

Given a manifold M of continuous functions ρ(r) and functional
F : M 7→ R, the functional derivative of F [ρ] is defined via the first
variation as

δF [ρ][ϕ] =

∫
δF

δρ(r)︸ ︷︷ ︸
func.der.

·ϕ(r)dr = lim
ε→0

F [ρ+ εϕ]− F [ρ]

ε
=

[
d

dϵ
F [ρ+ εϕ]

]
ε=0

(24)
Examples:

F [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

∥r− r′∥
drdr′ → δF

δρ(r)
=

∫
ρ(r′)

∥r− r′∥
dr′ (25)

F [ρ] = ρ(r′) =

∫
ρ(r) · δ(r′ − r)dr → δF

δρ(r)
= δ(r′ − r) (26)

F [ρ] =

∫
f (r, ρ(r),∇ρ(r)) dr → δF

δρ(r)
=
∂f

∂ρ
−∇ · ∂f

∂∇ρ
(27)
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Hartree-Fock Approximation

The first variation is equal to zero if

∀i ∈ {1, . . . , N} :
δL [{χi} , {λjk}]

δχi (x1)
= 0. (28)

NOTE: We may diagonalize the matrix of Lagrange multipliers using
a unitary transformation (we use the same notation for orbitals,
{λjk} → {εm}). After doing some work we get HF equations (closed-shell
form with 2N electrons)

∀k ∈ {1, . . . , N} :

−
1

2
∆︸ ︷︷ ︸

T̂

−
M∑
i=1

Zi

∥Ri − r∥︸ ︷︷ ︸
VN(r)

+ 2
N∑

i=1

∫
R3

∣∣ϕi
(
r′

)∣∣2
∥r′ − r∥

d
3
r
′

︸ ︷︷ ︸
VH(r)

ϕk (r)−

−
N∑

i=1

∫
R3

ϕ∗
i

(
r′

)
ϕk

(
r′

)
∥r − r′∥

d
3
r
′
ϕi (r)

︸ ︷︷ ︸
Vxϕk(r)

= εkϕk (r) . (29)
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Discretization

Within a finite-dimensional "basis", each spatial part of a one-electron
orbital is expanded as

ϕi (r) =

Nb∑
j=1

cjiµj (r) . (30)

Applying the Galerkin method to HF Equations leads to the
Roothaan-Hall matrix equation

F (C)C = MCΛ, (31)

where Λ ∈ RN×N is diagonal matrix of eigenvalues εi,

[M]kj =

∫
R3

µk (r)µj (r) d3r (32)

is the overlap matrix,

F (C) = H+ J (C) +K (C) . (33)
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Discretization

Core Hamiltonian matrix:

[H]ij =

∫
R3

1

2
∇µi (r) · ∇µj (r)−

M∑
k=1

Zkµi (r)µj (r)

∥Rk − r∥
d3r. (34)

Hartree matrix:

[J]ij = 2 ·
Nb∑
k=1

Nb∑
l=1

zlk · bijkl. (35)

Exchange matrix:

[K]ij = −
Nb∑
k=1

Nb∑
l=1

zlk · bikjl. (36)

Two-electron integrals:

[B]ijkl = bijkl =

∫
R3

∫
R3

µi (r)µj (r)µk (r
′)µl (r

′)

∥r− r′∥
d3r d3r′. (37)

Density matrix Z = CCT, [Z]lk = zlk.
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Limits of HF approximation

Hartree-Fock equations give us only an approximate solution to the
electronic SE:

E =
〈
ψ
∣∣∣Ĥ∣∣∣ψ〉 ≤

〈
ψHF

∣∣∣Ĥ∣∣∣ψHF

〉
= EHF (38)

(This is the case when we choose an infinite-dimensional Galerkin basis).
Solution:

After the EHF and orbital basis is calculated, we may consider more
Slater determinants that include unoccupied orbitals – post-HF
methods (Configuration Interaction, Coupled Clusters, Møller-Plesset
perturbation theory)
Instead one SD we may consider more of them from the beginning –
Multi-configurational SCF.
Combination of both previous approaches – Multireference
configuration interaction

NOTE: All this methods are very expensive – usually applicable on
systems of few atoms.
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Density Functional Theory (DFT)

Different philosophy: Instead of the wavefunction, the main quantity is
the electronic density

ρ (r1) = N
∑

si=
1
2 ,−

1
2

i=1,...,N

∫
R3

· · ·
∫
R3

|ψ (r1, s1, . . . , rN , sN )|2 d3r2 · · · d3rN . (39)

The mapping ψ 7→ ρ is evident. However, it can be reversed! The first
Hohenberg-Kohn theorem says:

The external potential VN (r) (up to a constant) and hence the total
energy E, is a unique functional of the ground state electronic density
ρGS (r).
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Density Functional Theory (DFT)

The dependence of the energy on the GS density:

E
[
ρGS

]
=

〈
ψ
[
ρGS

] ∣∣∣T̂e + Ven + Vee

∣∣∣ψ [
ρGS

]〉
. (40)

It is not difficult to realize that it can be reformulated in terms of ρGS as

E
[
ρGS

]
=

∫
R3

ρGS (r) · VN (r) d3r

︸ ︷︷ ︸
⟨ψ[ρGS]|Ven|ψ[ρGS]⟩

+ F
[
ρGS

]︸ ︷︷ ︸
⟨ψ[ρGS]|T̂e+Vee|ψ[ρGS]⟩

. (41)

Functional F is universal! It does not depend on the number of the nuclei
and their positions. However, its closed form is not known. The practical
usage of the energy formula is given by the second Hohenberg-Kohn
theorem:

The ground state density of a system in a particular external potential can
be found by minimizing an associated energy functional.
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Kohn-Sham Formalism

Reorganization of the original functional:

F [ρ] =
1

2

∫
R3

∫
R3

ρ (r) · ρ (r′)
∥r− r′∥

d3r d3r′

︸ ︷︷ ︸
EH[ρ]

+T [ρ] + Encl [ρ] . (42)

Now we replace our N electrons by a fictitious system of N noninteracting
particles. These particles are described by Kohn-Sham orbitals and form
single Slater determinant. Using KS orbitals, the density is calculated as:

ρ (r) = 2

N∑
i=1

∣∣∣ϕKS
i (r)

∣∣∣2 . (43)

NOTE: No direct correspondence between the KS wavefunction and the
original one. Generally, the kinetic energy of the KS system is different
from the original one.
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Kohn-Sham Formalism

However, we are able to write it down using the one-particle orbitals (as
an implicit functional of the density):

Ts [ρ] = −
N∑
i=1

∫
R3

ϕKS
i (r)∆ϕKS

i (r) d3r. (44)

Now, let us do some reordering of the terms in the energy functional:

F [ρ] = Ts [ρ] + EH [ρ] + T [ρ]− Ts [ρ] + Encl [ρ]︸ ︷︷ ︸
Exc[ρ]

, (45)

The xc term is still not known, but it represents a relatively small
contribution – approximations.
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Approximation of the xc energy

Exc [ρ] =

∫
R3

f (ρ (r) ,∇ρ (r) , . . .) d3r, (46)
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Kohn-Sham Equations

Idea (equivalent to HF eqs.): Constrained minimization of energy
functional (orthonormal KS orbitals). We use the functional derivative
chain rule

δF [ρ]

δϕKS
i (r)

= 4
δF [ρ]

δρ (r)
ϕKS
i (r) (47)

to derive the set of KS equations:−1

2
∆︸ ︷︷ ︸

T̂

−
M∑
i=1

Zi

∥Ri − r∥︸ ︷︷ ︸
VN(r)

+

∫
R3

ρ (r′)

∥r− r′∥
d3r′

︸ ︷︷ ︸
VH(r)

+
δExc [ρ]

δρ (r)︸ ︷︷ ︸
Vxc[ρ(r)]

ϕKS
i (r) = εiϕ

KS
i (r) .

(48)
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Discretized KS Equations

After the introduction of a basis, we get the matrix equation

F (C)C = MCΛ, . (49)

Similar to HF RH equations, however, matrix F is slightly different

F (C) = H+ J (C) +Vxc (C) . (50)

Each evaluation of Vxc requires a numerical integration.
The coefficient matrix represent the KS orbitals – no direct
correspondence to the original electronic wavefunction. It only generates
the same density.
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Basis

Plane-wave basis

ψn (r) =
∑
G

cn,k,Ge
i(k+G)·r, (51)

NOTE: Suitable (not only) for periodic systems.
Localized Gaussian-type orbitals (GTO):

µCGTO
ijk (r) = N · xiyjzke−α∥r∥

2

, (52)

or
µSGTO
lm (r) = N · Ylm (x, y, z) ∥r∥l e−α∥r∥

2

, (53)

NOTE: Analytical evaluation of integrals.
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Basis

Physically inspired Slater-type orbitals (STO):

µSTO
nlm (r) = N · ∥r∥n−l−1 · Ỹlm (r) · e−α∥r∥. (54)

Coulomb-Sturmian functions

µCS
nlm (r) = NCS · L2l+1

n−l−1 (α ∥r∥) · Ỹlm (r) · e−
α
2
∥r∥. (55)

Laguerre functions

µLF
nlm (r) = NLF · L2l+2

n−l−1 (α ∥r∥) · Ỹlm (r) · e−
α
2
∥r∥. (56)

All the cases require a numerical integration – very expensive, special
mathematical methods have to be used.
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Solution of the NEVP

How to solve the NEVP

F (C)C = MCΛ? (57)

Idea: linearization and iterative solution – Self-consistent field (SCF)
iteration

F
(
Ck−1

)
Ck = MCkΛk. (58)

Problems:
Two possible scenarios – convergence or oscillation between two
states (much more common)
Choice of the initial guess.

Alternative – mixing of matrices from previous iterations (Z or F).
Example:

F∗ = αFk + (1− α)Fk−1. (59)

More sophisticated mixing is done by Direct inversion of the iterative
subspace (DIIS) – minimization of a suitable error estimate (residual) in
the sense of the least squares. No proves of the convergence exist.
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Alternative formulation of the matrix equation

The alternative optimization approach is based on the direct minimization
of the energy functional. Instead of the coefficient matrix we consider the
density matrix

Z = CCT (60)

as a variable. The objective function can be written as
HF Equation (quadratic function):

EHF (Z) = Trace [2HZ+ (J (Z) +K (Z))Z] , (61)

KS Equation (generally nonlinear function):

EKS (Z) = Trace [2HZ+ J (Z)Z] + Exc [ρZ] . (62)

Minimization is done over the set of all feasible density matrices Z (can
be represented by equality constraints).
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Modification of the basis

It is useful to use the transformation X = M
1
2ZM

1
2 which leads to

optimization problem

find min f (X) = E
(
M− 1

2XM− 1
2

)
. (63)

with equality constraints that can be easily written as

X = XT , (64)

XX = X, (65)

Trace [X] = N. (66)

Such quadratically constrained problems require specific algorithms to be
solved.
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Example of the optimization method

Inexact Restoration Method (IRM):

Many alternatives exist...
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Examples

Finally, the end of the theoretical torture!!!! Some of my results will
follow.

Martin Mrovec (VSB-TUO) ESC 32 / 37



Challenging Molecules - searching of the GS energy

Some systems are known to have convergence issues (SCF) or there are
present local minima and/or saddle points. An example - Beryllium dimer:
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Potential curve - comparison of iterative methods

Example - HF molecule potential curve (dependence of the electronic
energy on the internuclear distance):
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Example - hexane molecule

Density-contour plot (1 contour):
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Example - cadmium imidazole and rhodium complex

Density-contour plot (more contours):
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Useful literature

1 Yousef Saad, James R. Chelikowsky, and Suzanne M. Shontz:
Numerical Methods for Electronic Structure Calculations of Materials
(DOI: 10.1137/060651653) – paper – brief overview of ESC

2 Richard M. Martin: Electronic Structure Basic Theory and Practical
Methods – book – ESC in more detail

3 Wolfgang Hackbusch: Tensor Spaces and Numerical Tensor Calculus
– book – tensor-product Hilbert spaces and much more

4 N. D. Woods, M. C. Payne, and P. J. Hasnip: Computing the
self-consistent field in Kohn–Sham density functional theory – paper
– nice overview of numerical approaches to solve KS (or HF)
NEVP
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